

[1] Oracle® Big Data Connectors
User's Guide

Release 4 (4.1)

E57352-03

February 2015

Describes installation and use of Oracle Big Data Connectors:
Oracle SQL Connector for Hadoop Distributed File System,
Oracle Loader for Hadoop, Oracle Data Integrator, Oracle
XQuery for Hadoop, and Oracle R Advanced Analytics for
Hadoop.

Oracle Big Data Connectors User's Guide, Release 4 (4.1)

E57352-03

Copyright © 2011, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Cloudera, Cloudera CDH, and Cloudera Manager are registered and unregistered trademarks of Cloudera,
Inc.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... x
Text Conventions... x
Syntax Conventions .. x

Changes in This Release for Oracle Big Data Connectors User's Guide xi

Changes in Oracle Big Data Connectors Release 4 (4.1) .. xi
Changes in Oracle Big Data Connectors Release 4 (4.0) .. xi

1 Getting Started with Oracle Big Data Connectors

About Oracle Big Data Connectors... 1-1
Big Data Concepts and Technologies... 1-2

What is MapReduce? ... 1-2
What is Apache Hadoop? ... 1-3

Downloading the Oracle Big Data Connectors Software... 1-3
Oracle SQL Connector for Hadoop Distributed File System Setup... 1-4

Software Requirements ... 1-4
Installing and Configuring a Hadoop Client on the Oracle Database System.......................... 1-5
Installing Oracle SQL Connector for HDFS ... 1-6
Granting User Privileges in Oracle Database... 1-9
Setting Up User Accounts on the Oracle Database System .. 1-10
Using Oracle SQL Connector for HDFS on a Secure Hadoop Cluster 1-10

Oracle Loader for Hadoop Setup.. 1-11
Software Requirements .. 1-11
Installing Oracle Loader for Hadoop ... 1-12
Providing Support for Offline Database Mode .. 1-12
Using Oracle Loader for Hadoop on a Secure Hadoop Cluster... 1-13

Oracle XQuery for Hadoop Setup .. 1-13
Software Requirements .. 1-14
Installing Oracle XQuery for Hadoop.. 1-14
Troubleshooting the File Paths.. 1-15
Configuring Oozie for the Oracle XQuery for Hadoop Action.. 1-16

Oracle R Advanced Analytics for Hadoop Setup.. 1-16

iv

Installing the Software on Hadoop... 1-16
Installing Additional R Packages.. 1-19
Providing Remote Client Access to R Users.. 1-21

Oracle Data Integrator .. 1-23

2 Oracle SQL Connector for Hadoop Distributed File System

About Oracle SQL Connector for HDFS.. 2-1
Getting Started With Oracle SQL Connector for HDFS ... 2-2
Configuring Your System for Oracle SQL Connector for HDFS .. 2-6
Using Oracle SQL Connector for HDFS with Oracle Big Data Appliance and Oracle Exadata
2-7
Using the ExternalTable Command-Line Tool... 2-7

About ExternalTable .. 2-7
ExternalTable Command-Line Tool Syntax ... 2-7

Creating External Tables ... 2-9
Creating External Tables with the ExternalTable Tool... 2-9
Creating External Tables from Data Pump Format Files ... 2-9
Creating External Tables from Hive Tables .. 2-12
Creating External Tables from Delimited Text Files.. 2-19
Creating External Tables in SQL... 2-22

Publishing the HDFS Data Paths ... 2-22
ExternalTable Syntax for Publish.. 2-22
ExternalTable Example for Publish .. 2-23

Exploring External Tables and Location Files ... 2-23
ExternalTable Syntax for Describe.. 2-23
ExternalTable Example for Describe .. 2-23

Dropping Database Objects Created by Oracle SQL Connector for HDFS 2-24
ExternalTable Syntax for Drop.. 2-24
ExternalTable Example for Drop .. 2-24

More About External Tables Generated by the ExternalTable Tool... 2-24
About Configurable Column Mappings.. 2-25
What Are Location Files? ... 2-26
Enabling Parallel Processing ... 2-27
Location File Management .. 2-27
Location File Names ... 2-28

Configuring Oracle SQL Connector for HDFS ... 2-28
Creating a Configuration File.. 2-28
Oracle SQL Connector for HDFS Configuration Property Reference 2-29

Performance Tips for Querying Data in HDFS ... 2-39

3 Oracle Loader for Hadoop

What Is Oracle Loader for Hadoop? ... 3-1
About the Modes of Operation.. 3-2

Online Database Mode .. 3-2
Offline Database Mode.. 3-3

Getting Started With Oracle Loader for Hadoop ... 3-3
Creating the Target Table ... 3-5

v

Supported Data Types for Target Tables.. 3-5
Supported Partitioning Strategies for Target Tables... 3-5
Compression ... 3-6

Creating a Job Configuration File ... 3-6
About the Target Table Metadata ... 3-8

Providing the Connection Details for Online Database Mode .. 3-8
Generating the Target Table Metadata for Offline Database Mode ... 3-9

About Input Formats .. 3-11
Delimited Text Input Format... 3-11
Complex Text Input Formats... 3-12
Hive Table Input Format.. 3-13
Avro Input Format .. 3-13
Oracle NoSQL Database Input Format .. 3-13
Custom Input Formats ... 3-14

Mapping Input Fields to Target Table Columns ... 3-15
Automatic Mapping.. 3-15
Manual Mapping... 3-16
Converting a Loader Map File .. 3-16

About Output Formats ... 3-18
JDBC Output Format .. 3-18
Oracle OCI Direct Path Output Format ... 3-19
Delimited Text Output Format ... 3-19
Oracle Data Pump Output Format ... 3-20

Running a Loader Job... 3-21
Specifying Hive Input Format JAR Files ... 3-22
Specifying Oracle NoSQL Database Input Format JAR Files ... 3-23
Job Reporting ... 3-23

Handling Rejected Records ... 3-23
Logging Rejected Records in Bad Files .. 3-23
Setting a Job Reject Limit ... 3-23

Balancing Loads When Loading Data into Partitioned Tables .. 3-24
Using the Sampling Feature .. 3-24
Tuning Load Balancing .. 3-24
Tuning Sampling Behavior .. 3-24
When Does Oracle Loader for Hadoop Use the Sampler's Partitioning Scheme? 3-25
Resolving Memory Issues .. 3-25
What Happens When a Sampling Feature Property Has an Invalid Value? 3-25

Optimizing Communications Between Oracle Engineered Systems .. 3-25
Oracle Loader for Hadoop Configuration Property Reference .. 3-26
Third-Party Licenses for Bundled Software .. 3-42

Apache Licensed Code ... 3-42
Apache Avro 1.7.3 .. 3-46
Apache Commons Mathematics Library 2.2... 3-46
Apache Hadoop 0.20.0.. 3-46
Jackson JSON 1.8.8 .. 3-46

vi

4 Using Oracle XQuery for Hadoop

What Is Oracle XQuery for Hadoop?.. 4-1
Getting Started With Oracle XQuery for Hadoop ... 4-2

Basic Steps ... 4-3
Example: Hello World! .. 4-3

About the Oracle XQuery for Hadoop Functions .. 4-4
About the Adapters ... 4-4
About Other Modules for Use With Oracle XQuery for Hadoop... 4-5

Creating an XQuery Transformation .. 4-6
XQuery Transformation Requirements .. 4-6
About XQuery Language Support... 4-7
Accessing Data in the Hadoop Distributed Cache.. 4-8
Calling Custom Java Functions from XQuery ... 4-8
Accessing User-Defined XQuery Library Modules and XML Schemas 4-8
XQuery Transformation Examples.. 4-9

Running Queries ... 4-13
Oracle XQuery for Hadoop Options .. 4-13
Generic Options... 4-14
About Running Queries Locally ... 4-15

Running Queries from Apache Oozie... 4-15
Getting Started Using the Oracle XQuery for Hadoop Oozie Action 4-15
Supported XML Elements.. 4-16
Example: Hello World .. 4-16

Oracle XQuery for Hadoop Configuration Properties ... 4-18
Third-Party Licenses for Bundled Software .. 4-20

Apache Licensed Code ... 4-20
ANTLR 3.2.. 4-21
Apache Ant 1.7.1 ... 4-21
Apache Xerces 2.9.1... 4-23
Apache XMLBeans 2.3, 2.5... 4-24
Jackson 1.8.8 ... 4-24
Woodstox XML Parser 4.2.0... 4-24

5 Oracle XQuery for Hadoop Reference

Avro File Adapter ... 5-2
Built-in Functions for Reading Avro Files.. 5-3
Custom Functions for Reading Avro Container Files... 5-5
Custom Functions for Writing Avro Files .. 5-7
Examples of Avro File Adapter Functions ... 5-9
About Converting Values Between Avro and XML .. 5-11

JSON File Adapter .. 5-20
Built-in Functions for Reading JSON ... 5-21
Custom Functions for Reading JSON Files ... 5-23
Examples of JSON Functions... 5-24
JSON File Adapter Configuration Properties ... 5-26
About Converting JSON Data Formats to XML ... 5-28

Oracle Database Adapter ... 5-29

vii

Custom Functions for Writing to Oracle Database .. 5-30
Examples of Oracle Database Adapter Functions .. 5-34
Oracle Loader for Hadoop Configuration Properties and Corresponding %oracle-property An-

notations 5-36
Oracle NoSQL Database Adapter .. 5-39

Prerequisites for Using the Oracle NoSQL Database Adapter... 5-40
Built-in Functions for Reading from and Writing to Oracle NoSQL Database 5-41
Custom Functions for Reading Values from Oracle NoSQL Database................................... 5-46
Custom Functions for Retrieving Single Values from Oracle NoSQL Database 5-49
Custom Functions for Writing to Oracle NoSQL Database .. 5-51
Examples of Oracle NoSQL Database Adapter Functions.. 5-52
Oracle NoSQL Database Adapter Configuration Properties.. 5-56

Sequence File Adapter.. 5-59
Built-in Functions for Reading and Writing Sequence Files... 5-60
Custom Functions for Reading Sequence Files... 5-64
Custom Functions for Writing Sequence Files.. 5-66
Examples of Sequence File Adapter Functions... 5-68

Solr Adapter ... 5-70
Prerequisites for Using the Solr Adapter... 5-71
Built-in Functions for Loading Data into Solr Servers... 5-72
Custom Functions for Loading Data into Solr Servers .. 5-73
Examples of Solr Adapter Functions.. 5-74
Solr Adapter Configuration Properties.. 5-75

Text File Adapter ... 5-78
Built-in Functions for Reading and Writing Text Files.. 5-79
Custom Functions for Reading Text Files.. 5-82
Custom Functions for Writing Text Files... 5-84
Examples of Text File Adapter Functions ... 5-85

Tika File Adapter... 5-88
Built-in Library Functions for Parsing Files with Tika .. 5-89
Custom Functions for Parsing Files with Tika.. 5-91
Tika Parser Output Format.. 5-92
Tika Adapter Configuration Properties ... 5-93
Examples of Tika File Adapter Functions .. 5-94

XML File Adapter .. 5-95
Built-in Functions for Reading XML Files ... 5-96
Custom Functions for Reading XML Files .. 5-98
Examples of XML File Adapter Functions .. 5-101

Utility Module ... 5-103
Duration, Date, and Time Functions .. 5-104
String Functions... 5-108

Hadoop Module... 5-111
Built-in Functions for Using Hadoop... 5-112

Serialization Annotations .. 5-114

6 Oracle XML Extensions for Hive

What are the XML Extensions for Hive? .. 6-1

viii

Using the Hive Extensions.. 6-2
About the Hive Functions... 6-3
Creating XML Tables... 6-3

Hive CREATE TABLE Syntax for XML Tables.. 6-3
CREATE TABLE Configuration Properties.. 6-4
CREATE TABLE Examples... 6-5

Oracle XML Functions for Hive Reference .. 6-11
Data Type Conversions .. 6-12
Hive Access to External Files... 6-13

Online Documentation of Functions... 6-14
xml_exists .. 6-15
xml_query ... 6-17
xml_query_as_primitive ... 6-19
xml_table ... 6-23

7 Using Oracle R Advanced Analytics for Hadoop

About Oracle R Advanced Analytics for Hadoop.. 7-1
Oracle R Advanced Analytics for Hadoop Architecture.. 7-1
Oracle R Advanced Analytics for Hadoop packages and functions .. 7-2
Oracle R Advanced Analytics for Hadoop APIs ... 7-3
Inputs to Oracle R Advanced Analytics for Hadoop.. 7-3

Access to HDFS Files ... 7-4
Access to Apache Hive .. 7-4

ORCH Functions for Hive... 7-5
ORE Functions for Hive .. 7-5
Generic R Functions Supported in Hive ... 7-5
Support for Hive Data Types ... 7-7
Usage Notes for Hive Access.. 7-8
Example: Loading Hive Tables into Oracle R Advanced Analytics for Hadoop 7-9

Access to Oracle Database ... 7-10
Usage Notes for Oracle Database Access .. 7-10
Scenario for Using Oracle R Advanced Analytics for Hadoop with Oracle R Enterprise ... 7-10

Oracle R Advanced Analytics for Hadoop Functions .. 7-10
Native Analytical Functions .. 7-11
Using the Hadoop Distributed File System (HDFS) .. 7-12
Using Apache Hive ... 7-12
Using Aggregate Functions in Hive ... 7-13
Making Database Connections.. 7-13
Copying Data and Working with HDFS Files .. 7-13
Converting to R Data Types .. 7-14
Using MapReduce... 7-15
Debugging Scripts... 7-16

Demos of Oracle R Advanced Analytics for Hadoop Functions.. 7-16
Security Notes for Oracle R Advanced Analytics for Hadoop ... 7-17

Index

ix

Preface

The Oracle Big Data Connectors User's Guide describes how to install and use Oracle Big
Data Connectors:

■ Oracle Loader for Hadoop

■ Oracle SQL Connector for Hadoop Distributed File System

■ Oracle XQuery for Hadoop

■ Oracle R Advanced Analytics for Hadoop

■ Oracle Data Integrator1

Audience
This document is intended for users of Oracle Big Data Connectors, including the
following:

■ Application developers

■ Java programmers

■ XQuery programmers

■ System administrators

■ Database administrators

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

1 Oracle Big Data Connectors includes a restricted use license for the Oracle Data Integrator
when licensed on an Oracle Big Data Appliance. However, additional licensing is required for
using it on other Hadoop clusters.

x

Related Documents
For more information, see the following documents:

■ Oracle Loader for Hadoop Java API Reference

■ Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator

■ Oracle Big Data Appliance Software User's Guide.

Text Conventions
The following text conventions are used in this document:

Syntax Conventions
The syntax is presented in a simple variation of Backus-Naur Form (BNF) that uses the
following symbols and conventions:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Symbol or Convention Description

[] Brackets enclose optional items.

{ } Braces enclose a choice of items, only one of which is required.

| A vertical bar separates alternatives within brackets or braces.

... Ellipses indicate that the preceding syntactic element can be
repeated.

delimiters Delimiters other than brackets, braces, and vertical bars must be
entered as shown.

xi

Changes in This Release for Oracle Big Data
Connectors User's Guide

This preface contains:

■ Changes in Oracle Big Data Connectors Release 4 (4.0)

Changes in Oracle Big Data Connectors Release 4 (4.1)
The following are changes in Oracle Big Data Connectors User's Guide for Oracle Big
Data Connectors Release 4 (4.1).

This table shows the software versions installed with Oracle Big Data Connectors 4.1:

Changes in Oracle Big Data Connectors Release 4 (4.0)
The following are changes in Oracle Big Data Connectors User's Guide for Oracle Big
Data Connectors Release 4 (4.0).

This table shows the software versions installed with Oracle Big Data Connectors 4.0:

Connector Version

Oracle SQL Connector for HDFS 3.2.0

Oracle Loader for Hadoop 3.3.0

Oracle XQuery for Hadoop 4.1.0

Oracle R Advanced Analytics for Hadoop 2.4.0

Oracle Data Integrator1

1 For information about requirements and instructions to set up and use Oracle Data Integrator,
refer to Hadoop chapter of Application Adapters Guide for Oracle Data Integrator.

12.1.3.0

Connector Version

Oracle SQL Connector for HDFS 3.1

Oracle Loader for Hadoop 3.2

Oracle Data Integrator Application Adapter for Hadoop1 12.1.3.0

Oracle XQuery for Hadoop 4.0.1

Oracle R Advanced Analytics for Hadoop 2.4

xii

1 For information about requirements and instructions to set up and use Oracle Data Integrator
Application Adapter for Hadoop, refer to Hadoop chapter of Application Adapters Guide for
Oracle Data Integrator.

Part I
Part I Setup

Part I contains the following chapter:

■ Chapter 1, "Getting Started with Oracle Big Data Connectors"

1

Getting Started with Oracle Big Data Connectors 1-1

1Getting Started with Oracle Big Data
Connectors

This chapter describes the Oracle Big Data Connectors and provides installation
instructions.

This chapter contains the following sections:

■ About Oracle Big Data Connectors

■ Big Data Concepts and Technologies

■ Downloading the Oracle Big Data Connectors Software

■ Oracle SQL Connector for Hadoop Distributed File System Setup

■ Oracle Loader for Hadoop Setup

■ Oracle XQuery for Hadoop Setup

■ Oracle R Advanced Analytics for Hadoop Setup

■ Oracle Data Integrator

About Oracle Big Data Connectors
Oracle Big Data Connectors facilitate access to data stored in an Apache Hadoop
cluster. It can be licensed for use on either Oracle Big Data Appliance or a Hadoop
cluster running on commodity hardware.

These are the connectors:

■ Oracle SQL Connector for Hadoop Distributed File System (previously Oracle
Direct Connector for HDFS): Enables an Oracle external table to access data
stored in Hadoop Distributed File System (HDFS) files or a table in Apache Hive.
The data can remain in HDFS or the Hive table, or it can be loaded into an Oracle
database.

■ Oracle Loader for Hadoop: Provides an efficient and high-performance loader for
fast movement of data from a Hadoop cluster into a table in an Oracle database.
Oracle Loader for Hadoop prepartitions the data if necessary and transforms it
into a database-ready format. It optionally sorts records by primary key or
user-defined columns before loading the data or creating output files.

■ Oracle XQuery for Hadoop: Runs transformations expressed in the XQuery
language by translating them into a series of MapReduce jobs, which are executed
in parallel E55984-01E55984-01on the Hadoop cluster. The input data can be
located in a file system accessible through the Hadoop File System API, such as
the Hadoop Distributed File System (HDFS), or stored in Oracle NoSQL Database.

Big Data Concepts and Technologies

1-2 Oracle Big Data Connectors User's Guide

Oracle XQuery for Hadoop can write the transformation results to HDFS, Oracle
NoSQL Database, Apache Solr, or Oracle Database. An additional XML processing
capability is through XML Extensions for Hive.

■ Oracle R Advanced Analytics for Hadoop: Provides a general computation
framework, in which you can use the R language to write your custom logic as
mappers or reducers. A collection of R packages provides predictive analytic
techniques that run as MapReduce jobs. The code executes in a distributed,
parallel manner using the available compute and storage resources on the Hadoop
cluster. Oracle R Advanced Analytics for Hadoop includes interfaces to work with
Apache Hive tables, the Apache Hadoop compute infrastructure, the local R
environment, and Oracle database tables.

■ Oracle Data Integrator: Extracts, loads, and transforms data from sources such as
files and databases into Hadoop and from Hadoop into Oracle or third-party
databases. Oracle Data Integrator provides a graphical user interface to utilize the
native Hadoop tools and transformation engines such as Hive, HBase, Sqoop,
Oracle Loader for Hadoop, and Oracle SQL Connector for Hadoop Distributed
File System.

Individual connectors may require that software components be installed in Oracle
Database and either the Hadoop cluster or an external system set up as a Hadoop
client for the cluster. Users may also need additional access privileges in Oracle
Database.

Big Data Concepts and Technologies
Enterprises are seeing large amounts of data coming from multiple sources.
Click-stream data in web logs, GPS tracking information, data from retail operations,
sensor data, and multimedia streams are just a few examples of vast amounts of data
that can be of tremendous value to an enterprise if analyzed. The unstructured and
semi-structured information provided by raw data feeds is of little value in and of
itself. The data must be processed to extract information of real value, which can then
be stored and managed in the database. Analytics of this data along with the
structured data in the database can provide new insights into the data and lead to
substantial business benefits.

What is MapReduce?
MapReduce is a parallel programming model for processing data on a distributed
system. It can process vast amounts of data quickly and can scale linearly. It is
particularly effective as a mechanism for batch processing of unstructured and
semi-structured data. MapReduce abstracts lower level operations into computations
over a set of keys and values.

A simplified definition of a MapReduce job is the successive alternation of two phases,
the map phase and the reduce phase. Each map phase applies a transform function
over each record in the input data to produce a set of records expressed as key-value
pairs. The output from the map phase is input to the reduce phase. In the reduce
phase, the map output records are sorted into key-value sets so that all records in a set
have the same key value. A reducer function is applied to all the records in a set and a
set of output records are produced as key-value pairs. The map phase is logically run
in parallel over each record while the reduce phase is run in parallel over all key
values.

See Also: My Oracle Support Information Center: Big Data
Connectors (ID 1487399.2) and its related information centers.

Downloading the Oracle Big Data Connectors Software

Getting Started with Oracle Big Data Connectors 1-3

What is Apache Hadoop?
Apache Hadoop is the software framework for the development and deployment of
data processing jobs based on the MapReduce programming model. At the core,
Hadoop provides a reliable shared storage and analysis system1. Analysis is provided
by MapReduce. Storage is provided by the Hadoop Distributed File System (HDFS), a
shared storage system designed for MapReduce jobs.

The Hadoop ecosystem includes several other projects including Apache Avro, a data
serialization system that is used by Oracle Loader for Hadoop.

Cloudera's Distribution including Apache Hadoop (CDH) is installed on Oracle Big
Data Appliance. You can use Oracle Big Data Connectors on a Hadoop cluster running
CDH or the equivalent Apache Hadoop components, as described in the setup
instructions in this chapter.

Downloading the Oracle Big Data Connectors Software
You can download Oracle Big Data Connectors from Oracle Technology Network or
Oracle Software Delivery Cloud.

To download from Oracle Technology Network:

1. Use any browser to visit this website at

http://www.oracle.com/technetwork/bdc/big-data-connectors/downloads/ind
ex.html

2. Click the name of each connector to download a zip file containing the installation
files.

To download from Oracle Software Delivery Cloud:

1. Use any browser to visit this website at

https://edelivery.oracle.com/

2. Accept the Terms and Restrictions to see the Media Pack Search page.

3. Select the search terms:

Note: Oracle Big Data Connectors 3.0 and later supports the Yet
Another Resource Negotiator (YARN) implementation of MapReduce.

1 Hadoop: The Definitive Guide, Third Edition by Tom White (O'Reilly Media Inc., 2012,
978-1449311520).

See Also:

■ For conceptual information about the Hadoop technologies, the
following third-party publication:

Hadoop: The Definitive Guide, Third Edition by Tom White (O'Reilly
Media Inc., 2012, ISBN: 978-1449311520).

■ For information about Cloudera's Distribution including Apache
Hadoop (CDH5), the Oracle Cloudera website at

http://oracle.cloudera.com/

■ For information about Apache Hadoop, the website at

http://hadoop.apache.org/

http://www.oracle.com/technetwork/bdc/big-data-connectors/downloads/index.html
http://www.oracle.com/technetwork/bdc/big-data-connectors/downloads/index.html

Oracle SQL Connector for Hadoop Distributed File System Setup

1-4 Oracle Big Data Connectors User's Guide

Select a Product Pack: Oracle Database

Platform: Linux x86-64

4. Click Go to display a list of product packs.

5. Select Oracle Big Data Connectors Media Pack for Linux x86-64 (B65965-0x), and
then click Continue.

6. Click Download for each connector to download a zip file containing the
installation files.

Oracle SQL Connector for Hadoop Distributed File System Setup
You install and configure Oracle SQL Connector for Hadoop Distributed File System
(HDFS) on the system where Oracle Database runs. If Hive tables are used as the data
source, then you must also install and run Oracle SQL Connector for HDFS on a
Hadoop client where users access Hive.

Oracle SQL Connector for HDFS is installed already on Oracle Big Data Appliance if it
was configured for Oracle Big Data Connectors. This installation supports users who
connect directly to Oracle Big Data Appliance to run their jobs.

This section contains the following topics:

■ Software Requirements

■ Installing and Configuring a Hadoop Client on the Oracle Database System

■ Installing Oracle SQL Connector for HDFS

■ Granting User Privileges in Oracle Database

■ Setting Up User Accounts on the Oracle Database System

■ Using Oracle SQL Connector for HDFS on a Secure Hadoop Cluster

Software Requirements
Oracle SQL Connector for HDFS requires the following software:

On the Hadoop cluster:

■ Cloudera's Distribution including Apache Hadoop version 4 (CDH4) or version 5
(CDH5), or Apache Hadoop 2.2.0

■ Java Development Kit (JDK) 1.6_08 or later. Consult the distributor of your
Hadoop software (Cloudera or Apache) for the recommended version.

■ Hive 0.8.1, 0.9.0, 0.10.0, or 0.12.0 (required for Hive table access, otherwise
optional)

This software is already installed on Oracle Big Data Appliance.

On the Oracle Database system and Hadoop client systems:

■ Oracle Database 12c, Oracle Database 11g release 2 (11.2.0.2 or later), or Oracle
Database 10g release 2 (10.2.0.5) for Linux.

■ To support the Oracle Data Pump file format in Oracle Database release 11.2.0.2 or
11.2.0.3, an Oracle Database one-off patch. To download this patch, go to
http://support.oracle.com and search for bug 14557588.

Release 11.2.0.4 and later releases do not require this patch.

Oracle SQL Connector for Hadoop Distributed File System Setup

Getting Started with Oracle Big Data Connectors 1-5

■ The same version of Hadoop as your Hadoop cluster: CDH4, CDH5, Apache
Hadoop 1.0, or Apache Hadoop 1.1.1.

If you have a secure Hadoop cluster configured with Kerberos, then the Hadoop
client on the database system must be set up to access a secure cluster. See "Using
Oracle SQL Connector for HDFS on a Secure Hadoop Cluster" on page 1-10.

■ The same version of JDK as your Hadoop cluster.

Installing and Configuring a Hadoop Client on the Oracle Database System
Oracle SQL Connector for HDFS works as a Hadoop client. You must install Hadoop
on the Oracle Database system and minimally configure it for Hadoop client use only.
You do not need to perform a full configuration of Hadoop on the Oracle Database
system to run MapReduce jobs for Oracle SQL Connector for HDFS.

For Oracle RAC systems including Oracle Exadata Database Machine, you must install
and configure Oracle SQL Connector for HDFS using identical paths on all systems
running Oracle instances.

You can optionally set up additional Hadoop client systems by following these
instructions.

To configure the Oracle Database system as a Hadoop client:

1. Install and configure the same version of CDH or Apache Hadoop on the Oracle
Database system as on the Hadoop cluster. If you are using Oracle Big Data
Appliance, then complete the procedures for providing remote client access in the
Oracle Big Data Appliance Software User's Guide. Otherwise, follow the installation
instructions provided by the distributor (Cloudera or Apache).

2. If your cluster is secured with Kerberos, then you must configure the Oracle
system to permit Kerberos authentication. See "Using Oracle SQL Connector for
HDFS on a Secure Hadoop Cluster" on page 1-10.

3. Ensure that Oracle Database has access to HDFS:

a. Log in to the system where Oracle Database is running by using the Oracle
Database account.

b. Open a Bash shell and enter this command:

hdfs dfs -ls /user

You might need to add the directory containing the Hadoop executable file to
the PATH environment variable. The default path for CDH is /usr/bin.

You should see the same list of directories that you see when you run the hdfs
dfs command directly on the Hadoop cluster. If not, then first ensure that the
Hadoop cluster is up and running. If the problem persists, then you must
correct the Hadoop client configuration so that Oracle Database has access to
the Hadoop cluster file system.

4. For an Oracle RAC system, repeat this procedure for every Oracle instance.

Note: Do not start Hadoop on the Oracle Database system. If it is
running, then Oracle SQL Connector for HDFS attempts to use it
instead of the Hadoop cluster. Oracle SQL Connector for HDFS just
uses the Hadoop JAR files and the configuration files from the
Hadoop cluster on the Oracle Database system.

Oracle SQL Connector for Hadoop Distributed File System Setup

1-6 Oracle Big Data Connectors User's Guide

The Hadoop client is now ready for use. No other Hadoop configuration steps are
needed.

Installing Oracle SQL Connector for HDFS
Follow this procedure to install Oracle SQL Connector for HDFS on the Oracle
Database system. In addition, you can install Oracle SQL Connector for HDFS on any
system configured as a Hadoop client.

To install Oracle SQL Connector for HDFS:

1. Download the zip file to a directory on the system where Oracle Database runs.

2. Unpack the content of oraosch-version.zip.

$ unzip oraosch-3.2.0zip
Archive: oraosch-3.2.0.zip
 extracting: orahdfs-3.2.0.zip
 inflating: README.txt

3. Unpack orahdfs-version.zip into a permanent directory:

$ unzip orahdfs-3.2.0.zip
unzip orahdfs-3.2.0.zip
Archive: orahdfs-3.2.0.zip
 creating: orahdfs-3.2.0/
 creating: orahdfs-3.2.0/log/
 creating: orahdfs-3.2.0/examples/
 creating: orahdfs-3.2.0/examples/sql/
 inflating: orahdfs-3.2.0/examples/sql/mkhive_unionall_view.sql
 creating: orahdfs-3.2.0/doc/
 inflating: orahdfs-3.2.0/doc/README.txt
 creating: orahdfs-3.2.0/jlib/
 inflating: orahdfs-3.2.0/jlib/osdt_cert.jar
 inflating: orahdfs-3.2.0/jlib/oraclepki.jar
 inflating: orahdfs-3.2.0/jlib/osdt_core.jar
 inflating: orahdfs-3.2.0/jlib/ojdbc6.jar
 inflating: orahdfs-3.2.0/jlib/orahdfs.jar
 inflating: orahdfs-3.2.0/jlib/ora-hadoop-common.jar
 creating: orahdfs-3.2.0/bin/
 inflating: orahdfs-3.2.0/bin/hdfs_stream

The unzipped files have the structure shown in Example 1–1.

4. Open the orahdfs-3.2.0/bin/hdfs_stream Bash shell script in a text editor, and
make the changes indicated by the comments in the script, if necessary

The hdfs_stream script does not inherit any environment variable settings, and so they
are set in the script if Oracle SQL Connector for HDFS needs them:

■ PATH: If the hadoop script is not in /usr/bin:bin (the path initially set in hdfs_
stream), then add the Hadoop bin directory, such as /usr/lib/hadoop/bin.

■ JAVA_HOME: If Hadoop does not detect Java, then set this variable to the Java
installation directory. For example, /usr/bin/java.

See the comments in the script for more information about these environment
variables.

The hdfs_stream script is the preprocessor for the Oracle Database external table
created by Oracle SQL Connector for HDFS.

5. If your cluster is secured with Kerberos, then obtain a Kerberos ticket:

Oracle SQL Connector for Hadoop Distributed File System Setup

Getting Started with Oracle Big Data Connectors 1-7

> kinit
> password

6. Run hdfs_stream from the Oracle SQL Connector for HDFS /bin directory. You
should see this usage information:

$./hdfs_stream
Usage: hdfs_stream locationFile

If you do not see the usage statement, then ensure that the operating system user
that Oracle Database is running under (such as oracle) has the following
permissions:

■ Read and execute permissions on the hdfs_stream script:

$ ls -l OSCH_HOME/bin/hdfs_stream
-rwxr-xr-x 1 oracle oinstall Nov 27 15:51 hdfs_stream

■ Read permission on orahdfs.jar.

$ ls -l OSCH_HOME/jlib/orahdfs.jar
-rwxr-xr-x 1 oracle oinstall Nov 27 15:51 orahdfs.jar

If you do not see these permissions, then enter a chmod command to fix them, for
example:

$ chmod 755 OSCH_HOME/bin/hdfs_stream

In the previous commands, OSCH_HOME represents the Oracle SQL Connector for
HDFS home directory.

7. For an Oracle RAC system, repeat the previous steps for every Oracle instance,
using identical path locations.

8. Log in to Oracle Database and create a database directory for the
orahdfs-version/bin directory where hdfs_stream resides. For Oracle RAC
systems, this directory must be on a shared disk that all Oracle instances can
access.

In this example, Oracle SQL Connector for HDFS is installed in /etc:

SQL> CREATE OR REPLACE DIRECTORY osch_bin_path AS '/etc/orahdfs-3.2.0/bin';

9. To support access to Hive tables:

1. Ensure that the system is configured as a Hive client.

2. Add the Hive JAR files and the Hive conf directory to the HADOOP_CLASSPATH
environment variable. To avoid JAR conflicts among the various Hadoop
products, Oracle recommends that you set HADOOP_CLASSPATH in your local
shell initialization script instead of making a global change to HADOOP_
CLASSPATH.

The unzipped files have the structure shown in Example 1–1.

Example 1–1 Structure of the orahdfs Directory

orahdfs-version
 bin/
 hdfs_stream
 doc/
 README.txt
 examples/
 sql/

Oracle SQL Connector for Hadoop Distributed File System Setup

1-8 Oracle Big Data Connectors User's Guide

 mkhive_unionall_view.sql
 jlib/
 ojdbc6.jar
 ora-hadoop-common.jar
 oraclepki.jar
 orahdfs.jar
 osdt_cert.jar
 osdt_core.jar
 log/

Figure 1–1 illustrates shows the flow of data and the components locations.

Oracle SQL Connector for Hadoop Distributed File System Setup

Getting Started with Oracle Big Data Connectors 1-9

Figure 1–1 Oracle SQL Connector for HDFS Installation for HDFS and Data Pump Files

Granting User Privileges in Oracle Database
Oracle Database users require these privileges when using Oracle SQL Connector for
HDFS to create external tables:

■ CREATE SESSION

Oracle SQL Connector for Hadoop Distributed File System Setup

1-10 Oracle Big Data Connectors User's Guide

■ CREATE TABLE

■ CREATE VIEW

■ EXECUTE on the UTL_FILE PL/SQL package

■ READ and EXECUTE on the OSCH_BIN_PATH directory created during the installation
of Oracle SQL Connector for HDFS. Do not grant write access to anyone. Grant
EXECUTE only to those who intend to use Oracle SQL Connector for HDFS.

■ READ and WRITE on a database directory for storing external tables, or the CREATE
ANY DIRECTORY system privilege. For Oracle RAC systems, this directory must be
on a shared disk that all Oracle instances can access.

■ A tablespace and quota for copying data into the Oracle database. Optional.

Example 1–2 shows the SQL commands granting these privileges to HDFSUSER.

Example 1–2 Granting Users Access to Oracle SQL Connector for HDFS

CONNECT / AS sysdba;
CREATE USER hdfsuser IDENTIFIED BY password
 DEFAULT TABLESPACE hdfsdata
 QUOTA UNLIMITED ON hdfsdata;
GRANT CREATE SESSION, CREATE TABLE, CREATE VIEW TO hdfsuser;
GRANT EXECUTE ON sys.utl_file TO hdfsuser;
GRANT READ, EXECUTE ON DIRECTORY osch_bin_path TO hdfsuser;
GRANT READ, WRITE ON DIRECTORY external_table_dir TO hdfsuser;

Setting Up User Accounts on the Oracle Database System
To create external tables for HDFS and Data Pump format files, users can log in to
either the Oracle Database system or another system set up as a Hadoop client.

You can set up an account on these systems the same as you would for any other
operating system user. HADOOP_CLASSPATH must include path/orahdfs-3.2.0/jlib/*.
You can add this setting to the shell profile as part of this installation procedure, or
users can set it themselves. The following example alters HADOOP_CLASSPATH in the
Bash shell where Oracle SQL Connector for HDFS is installed in /usr/bin:

export HADOOP_CLASSPATH="$HADOOP_CLASSPATH:/usr/bin/orahdfs-3.2.0/jlib/*"

Using Oracle SQL Connector for HDFS on a Secure Hadoop Cluster
When users access an external table that was created using Oracle SQL Connector for
HDFS, the external table acts like a Hadoop client running on the system where the
Oracle database is running. It uses the identity of the operating system user where
Oracle is installed.

A secure Hadoop cluster has Kerberos installed and configured to authenticate client
activity. You must configure Oracle SQL Connector for HDFS for use with a Hadoop
cluster secured by Kerberos.

For a user to authenticate using kinit:

■ A Hadoop administrator must register the operating system user (such as oracle)
and password in the Key Distribution Center (KDC) for the cluster.

Note: To query an external table that uses Oracle SQL Connector for
HDFS, users only need the SELECT privilege on the table.

Oracle Loader for Hadoop Setup

Getting Started with Oracle Big Data Connectors 1-11

■ A system administrator for the Oracle Database system must configure
/etc/krb5.conf and add a domain definition that refers to the KDC managed by
the secure cluster.

These steps enable the operating system user to authenticate with the kinit utility
before submitting Oracle SQL Connector for HDFS jobs. The kinit utility typically
uses a Kerberos keytab file for authentication without an interactive prompt for a
password.

The system should run kinit on a regular basis, before letting the Kerberos ticket
expire, to enable Oracle SQL Connector for HDFS to authenticate transparently. Use
cron or a similar utility to run kinit. For example, if Kerberos tickets expire every two
weeks, then set up a cron job to renew the ticket weekly.

Be sure to schedule the cron job to run when Oracle SQL Connector for HDFS is not
actively being used.

Do not call kinit within the Oracle SQL Connector for HDFS preprocessor script
(hdfs_stream), because it could trigger a high volume of concurrent calls to kinit and
create internal Kerberos caching errors.

Oracle Loader for Hadoop Setup
Follow the instructions in these sections for setting up Oracle Loader for Hadoop:

■ Software Requirements

■ Installing Oracle Loader for Hadoop

■ Providing Support for Offline Database Mode

■ Using Oracle Loader for Hadoop on a Secure Hadoop Cluster

Software Requirements
Oracle Loader for Hadoop requires the following software:

■ A target database system running one of the following:

– Oracle Database 12c

– Oracle Database 11g release 2 (11.2.0.4)

– Oracle Database 11g release 2 (11.2.0.3)

– Oracle Database 11g release 2 (11.2.0.2) with required patch

– Oracle Database 10g release 2 (10.2.0.5)

Note: Oracle Big Data Appliance configures Kerberos security
automatically as a configuration option. For details about setting up
client systems for a secure Oracle Big Data Appliance cluster, see
Oracle Big Data Appliance Software User's Guide.

Note: To use Oracle Loader for Hadoop with Oracle Database 11g
release 2 (11.2.0.2), you must first apply a one-off patch that addresses
bug number 11897896. To access this patch, go to
http://support.oracle.com and search for the bug number.

Oracle Loader for Hadoop Setup

1-12 Oracle Big Data Connectors User's Guide

■ Cloudera's Distribution including Apache Hadoop version 4 (CDH4) or version 5
(CDH5), or Apache Hadoop 2.2.0.

■ Apache Hive 0.8.1, 0.9.0, 0.10.0, 0.12.0, or 0.13.0 if you are loading data from Hive
tables.

Installing Oracle Loader for Hadoop
Oracle Loader for Hadoop is packaged with the Oracle Database 11g release 2 client
libraries and Oracle Instant Client libraries for connecting to Oracle Database 11.2.0.2
or 11.2.0.3.

To install Oracle Loader for Hadoop:

1. Unpack the content of oraloader-version.x86_64.zip into a directory on your
Hadoop cluster or on a system configured as a Hadoop client.

2. Unzip oraloader-version-h2.x86_64.zip into a directory on your Hadoop
cluster.

A directory named oraloader-version-h2 is created with the following
subdirectories:

doc
jlib
lib
examples

3. Create a variable named OLH_HOME and set it to the installation directory.

4. Add the following paths to the HADOOP_CLASSPATH variable:

■ For all installations:

$OLH_HOME/jlib/*

■ To support data loads from Hive tables:

/usr/lib/hive/lib/*
/etc/hive/conf

See "Specifying Hive Input Format JAR Files" on page 3-22.

■ To read data from Oracle NoSQL Database Release 2:

$KVHOME/lib/kvstore.jar

Providing Support for Offline Database Mode
In a typical installation, Oracle Loader for Hadoop can connect to the Oracle Database
system from the Hadoop cluster or a Hadoop client. If this connection is
impossible—for example, the systems are located on distinct networks—then you can
use Oracle Loader for Hadoop in offline database mode. See "About the Modes of
Operation" on page 3-2.

Note: The system where you install Oracle Loader for Hadoop
requires the same resources that an Oracle Client requires. For
information about Oracle Client requirements included with Oracle
Database 12c Release 1 (12.1), refer to Oracle Database Client Installation
Guide for Linux.

Oracle XQuery for Hadoop Setup

Getting Started with Oracle Big Data Connectors 1-13

To support offline database mode, you must install Oracle Loader for Hadoop on two
systems:

■ The Hadoop cluster or a system set up as a Hadoop client, as described in
"Installing Oracle Loader for Hadoop" on page 1-12.

■ The Oracle Database system or a system with network access to Oracle Database,
as described in the following procedure.

To support Oracle Loader for Hadoop in offline database mode:

1. Unpack the content of oraloader-version.zip into a directory on the Oracle
Database system or a system with network access to Oracle Database.

2. Unzip unzip oraloader-version-h2.x86_64.zip version of the software as you
installed on the Hadoop cluster, for either CDH4 or CDH5.

3. Create a variable named OLH_HOME and set it to the installation directory. This
example uses the Bash shell syntax:

$ export OLH_HOME="/usr/bin/oraloader-version-h2/"

4. Add the Oracle Loader for Hadoop JAR files to the CLASSPATH environment
variable. This example uses the Bash shell syntax:

$ export CLASSPATH=$CLASSPATH:$OLH_HOME/jlib/*

Using Oracle Loader for Hadoop on a Secure Hadoop Cluster
A secure Hadoop cluster has Kerberos installed and configured to authenticate client
activity. An operating system user must be authenticated before initiating an Oracle
Loader for Hadoop job to run on a secure Hadoop cluster. For authentication, the user
must log in to the operating system where the job will be submitted and use the
standard Kerberos kinit utility.

For a user to authenticate using kinit:

■ A Hadoop administrator must register the operating system user and password in
the Key Distribution Center (KDC) for the cluster.

■ A system administrator for the client system, where the operating system user will
initiate an Oracle Loader for Hadoop job, must configure /etc/krb5.conf and
add a domain definition that refers to the KDC managed by the secure cluster.

Typically, the kinit utility obtains an authentication ticket that lasts several days.
Subsequent Oracle Loader for Hadoop jobs authenticate transparently using the
unexpired ticket.

Oracle XQuery for Hadoop Setup
You install and configure Oracle XQuery for Hadoop on the Hadoop cluster. If you are
using Oracle Big Data Appliance, then the software is already installed.

The following topics describe the software installation:

■ Software Requirements

Note: Oracle Big Data Appliance configures Kerberos security
automatically as a configuration option. For details about setting up
client systems for a secure Oracle Big Data Appliance cluster, see
Oracle Big Data Appliance Software User's Guide.

Oracle XQuery for Hadoop Setup

1-14 Oracle Big Data Connectors User's Guide

■ Installing Oracle XQuery for Hadoop

■ Troubleshooting the File Paths

■ Configuring Oozie for the Oracle XQuery for Hadoop Action

Software Requirements
Oracle Big Data Appliance 3.1 meets the following software requirements. However, if
you are installing Oracle XQuery for Hadoop on a third-party cluster, then you must
ensure that these components are installed.

■ Java 7.x or 6.x

■ Cloudera's Distribution including Apache Hadoop Version 5 (CDH 5.0) or above

■ Oracle NoSQL Database 3.x or 2.x to support reading and writing to Oracle
NoSQL Database

■ Oracle Loader for Hadoop 3.1 to support writing tables in Oracle databases

Installing Oracle XQuery for Hadoop
Take the following steps to install Oracle XQuery for Hadoop.

To install Oracle XQuery for Hadoop:

1. Unpack the contents of oxh-version.zip into the installation directory:

$ unzip oxh-4.1.0-cdh-5.0.0.zip
Archive: oxh-4.1.0-cdh-5.0.0.zip
 creating: oxh-4.1.0-cdh5.0.0/
 creating: oxh-4.1.0-cdh5.0.0/lib/
 creating: oxh-4.1.0-cdh5.0.0/oozie/
 creating: oxh-4.1.0-cdh5.0.0/oozie/lib/
 inflating: oxh-4.1.0-cdh5.0.0/lib/ant-launcher.jar
 inflating: oxh-4.1.0-cdh5.0.0/lib/ant.jar
 .
 .
 .

You can now run Oracle XQuery for Hadoop.

2. For the fastest execution time, copy the libraries into the Hadoop distributed
cache:

a. Copy all Oracle XQuery for Hadoop and third-party libraries into an HDFS
directory. To use the -exportliboozie option to copy the files, see "Oracle
XQuery for Hadoop Options" on page 4-13. Alternatively, you can copy the
libraries manually using the HDFS command line interface.

If you use Oozie, then use the same folder for all files. See "Configuring Oozie
for the Oracle XQuery for Hadoop Action" on page 1-16

b. Set the oracle.hadoop.xquery.lib.share property or use the -sharelib
option on the command line to identify the directory for the Hadoop
distributed cache.

3. To support data loads into Oracle Database, install Oracle Loader for Hadoop:

a. Unpack the content of oraloader-version.x86_64.zip into a directory on
your Hadoop cluster or on a system configured as a Hadoop client. This
archive contains an archive and a README file.

Oracle XQuery for Hadoop Setup

Getting Started with Oracle Big Data Connectors 1-15

b. Unzip the archive into a directory on your Hadoop cluster:

unzip oraloader-version-h2.x86_64.zip

A directory named oraloader-version-h2 is created with the following
subdirectories:

doc
jlib
lib
examples

c. Create an environment variable named OLH_HOME and set it to the installation
directory. Do not set HADOOP_CLASSPATH.

4. To support data loads into Oracle NoSQL Database, install it, and then set an
environment variable named KVHOMEto the Oracle NoSQL Database installation
directory.

5. To support indexing by Apache Solr:

a. Ensure that Solr is installed and configured in your Hadoop cluster. Solr is
included in Cloudera Search, which is installed automatically on Oracle Big
Data Appliance.

b. Create a collection in your Solr installation into which you will load
documents. To create a collection, use the solrctl utility.

c. Configure Oracle XQuery for Hadoop to use your Solr installation by setting
the OXH_SOLR_MR_HOME environment variable to the local directory containing
search-mr-version.jar and search-mr-version-job.jar. For example:

$ export OXH_SOLR_MR_HOME="/usr/lib/solr/contrib/mr"

Troubleshooting the File Paths
If Oracle XQuery for Hadoop fails to find its own or third-party libraries when
running queries, then first ensure that the environment variables are set, as described
in "Installing Oracle XQuery for Hadoop" on page 1-14.

If they are set correctly, then you may need to edit lib/oxh-lib.xml. This file
identifies the location of Oracle XQuery for Hadoop system JAR files and other
libraries, such as Avro, Oracle Loader for Hadoop, and Oracle NoSQL Database.

If necessary, you can reference environment variables in this file as ${env.variable},
such as ${env.OLH_HOME}. You can also reference Hadoop properties as ${property},
such as ${mapred.output.dir}.

See Also: For the solrctl utility, Cloudera Search User Guide at

http://www.cloudera.com/content/cloudera-content/cloudera-do
cs/Search/latest/Cloudera-Search-User-Guide/csug_solrctl_
ref.html

Note: Configure Oracle XQuery for Hadoop and set the OXH_SOLR_
MR_HOME environment variable to the local directory before using
Apache Tika adapter as well.

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_solrctl_ref.html

Oracle R Advanced Analytics for Hadoop Setup

1-16 Oracle Big Data Connectors User's Guide

Configuring Oozie for the Oracle XQuery for Hadoop Action
You can use Apache Oozie workflows to run your queries, as described in "Running
Queries from Apache Oozie" on page 4-15. The software is already installed and
configured on Oracle Big Data Appliance.

For other Hadoop clusters, you must first configure Oozie to use the Oracle XQuery
for Hadoop action. These are the general steps to install the Oracle XQuery for
Hadoop action:

1. Modify the Oozie configuration. If you run CDH on third-party hardware, then
use Cloudera Manager to change the Oozie server configuration. For other
Hadoop installations, edit oozie-site.htm.

■ Add oracle.hadoop.xquery.oozie.OXHActionExecutor to the value of the
oozie.service.ActionService.executor.ext.classes property.

■ Add oxh-action-v1.xsd to the value of the
oozie.service.SchemaService.wf.ext.schemas property.

2. Add oxh-oozie.jar to the Oozie server class path. For example, in a CDH5
installation, copy oxh-oozie.jar to /var/lib/oozie on the server.

3. Add all Oracle XQuery for Hadoop dependencies to the Oozie shared library in a
subdirectory named oxh. You can use the CLI -exportliboozie option. See
"Oracle XQuery for Hadoop Options" on page 4-13.

4. Restart Oozie for the changes to take effect.

The specific steps depend on your Oozie installation, such as whether Oozie is already
installed and which version you are using.

Oracle R Advanced Analytics for Hadoop Setup
Oracle R Advanced Analytics for Hadoop requires the installation of a software
environment on the Hadoop side and on a client Linux system. These topics describe
the installation:

■ Installing the Software on Hadoop

■ Installing Additional R Packages

■ Providing Remote Client Access to R Users

Installing the Software on Hadoop
Oracle Big Data Appliance supports Oracle R Advanced Analytics for Hadoop
without any additional software installation or configuration. However, to use Oracle
R Advanced Analytics for Hadoop on a third-party Hadoop cluster, you must create
the necessary environment.

Software Requirements for a Third-Party Hadoop Cluster
You must install several software components on a third-party Hadoop cluster to
support Oracle R Advanced Analytics for Hadoop.

Install these components on third-party servers:

See Also: Oracle R Advanced Analytics for Hadoop Release Notes
at

http://www.oracle.com/technetwork/database/database-technolo
gies/bdc/r-advanalytics-for-hadoop/documentation/index.html

http://www.oracle.com/technetwork/database/database-technologies/bdc/r-advanalytics-for-hadoop/documentation/index.html
http://www.oracle.com/technetwork/database/database-technologies/bdc/r-advanalytics-for-hadoop/documentation/index.html

Oracle R Advanced Analytics for Hadoop Setup

Getting Started with Oracle Big Data Connectors 1-17

■ Cloudera's Distribution including Apache Hadoop version 4 (CDH5) or Apache
Hadoop 0.20.2+923.479 or later.

Complete the instructions provided by the distributor.

■ Apache Hive 0.10.0+67 or later

See "Installing Hive on a Third-Party Hadoop Cluster" on page 1-18.

■ Sqoop 1.3.0+5.95 or later for the execution of functions that connect to Oracle
Database. Oracle R Advanced Analytics for Hadoop does not require Sqoop to
install or load.

See "Installing Sqoop on a Third-Party Hadoop Cluster" on page 1-17.

■ Mahout for the execution of (orch_lmf_mahout_als.R).

■ Java Virtual Machine (JVM), preferably Java HotSpot Virtual Machine 6.

Complete the instructions provided at the download site at

http://www.oracle.com/technetwork/java/javase/downloads/index.html

■ Oracle R Distribution 3.0.1 with all base libraries on all nodes in the Hadoop
cluster.

See "Installing R on a Third-Party Hadoop Cluster" on page 1-18.

■ The ORCH package on each R engine, which must exist on every node of the
Hadoop cluster.

See "Installing the ORCH Package on a Third-Party Hadoop Cluster" on page 1-18.

■ Oracle Loader for Hadoop to support the OLH driver (optional).

See "Oracle Loader for Hadoop Setup" on page 1-11.

Installing Sqoop on a Third-Party Hadoop Cluster
Sqoop provides a SQL-like interface to Hadoop, which is a Java-based environment.
Oracle R Advanced Analytics for Hadoop uses Sqoop for access to Oracle Database.

To install and configure Sqoop for use with Oracle Database:

1. Install Sqoop if it is not already installed on the server.

For Cloudera's Distribution including Apache Hadoop, see the Sqoop installation
instructions in the CDH Installation Guide at

Note: Do not set HADOOP_HOME on the Hadoop cluster. CDH5 does not
need it, and it interferes with Oracle R Advanced Analytics for
Hadoop. If you must set HADOOP_HOME for another application, then
also set HADOOP_LIBEXEC_DIR in the /etc/bashrc file. For example:

export HADOOP_LIBEXEC_DIR=/usr/lib/hadoop/libexec

Note: Sqoop is required even when using Oracle Loader for Hadoop
as a driver for loading data into Oracle Database. Sqoop performs
additional functions, such as copying data from a database to HDFS
and sending free-form queries to a database. The driver also uses
Sqoop to perform operations that Oracle Loader for Hadoop does not
support.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Oracle R Advanced Analytics for Hadoop Setup

1-18 Oracle Big Data Connectors User's Guide

http://oracle.cloudera.com/

2. Download the appropriate Java Database Connectivity (JDBC) driver for Oracle
Database from Oracle Technology Network at

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.h
tml

3. Copy the driver JAR file to $SQOOP_HOME/lib, which is a directory such as
/usr/lib/sqoop/lib.

4. Provide Sqoop with the connection string to Oracle Database.

$ sqoop import --connect jdbc_connection_string

For example, sqoop import --connect jdbc:oracle:thin@myhost:1521/orcl.

Installing Hive on a Third-Party Hadoop Cluster
Hive provides an alternative storage and retrieval mechanism to HDFS files through a
querying language called HiveQL. Oracle R Advanced Analytics for Hadoop uses the
data preparation and analysis features of HiveQL, while enabling you to use R
language constructs.

To install Hive:

1. Follow the instructions provided by the distributor (Cloudera or Apache) for
installing Hive.

2. Verify that the installation is working correctly:

$ hive -H
usage: hive
 -d,--define <key=value> Variable subsitution to apply to hive
 commands. e.g. -d A=B or --define A=B
 .
 .
 .

3. If the command fails or you see warnings in the output, then fix the Hive
installation.

Installing R on a Third-Party Hadoop Cluster
You can download Oracle R Distribution 3.0.1 and get the installation instructions
from the website at

http://www.oracle.com/technetwork/database/database-technologies/r/r-distr
ibution/downloads/index.html

Installing the ORCH Package on a Third-Party Hadoop Cluster
ORCH is the name of the Oracle R Advanced Analytics for Hadoop package.

To install the ORCH package:

1. Log in as root to the first node of the cluster.

2. Set the environment variables for the supporting software:

$ export JAVA_HOME="/usr/lib/jdk7"
$ export R_HOME="/usr/lib64/R"
$ export SQOOP_HOME "/usr/lib/sqoop"

3. Unzip the downloaded file:

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/database-technologies/r/r-distribution/downloads/index.html
http://www.oracle.com/technetwork/database/database-technologies/r/r-distribution/downloads/index.html

Oracle R Advanced Analytics for Hadoop Setup

Getting Started with Oracle Big Data Connectors 1-19

$ unzip orch-version.zip
$ unzip orch-linux-x86_64-2.4.0.zip
Archive: orch-linux-x86_64-2.4.0.zip
 creating: ORCH2.4.0/
 extracting: ORCH2.4.0/ORCH_2.4.0_R_x86_64-unknown-linux-gnu.tar.gz
 inflating: ORCH2.4.0/ORCHcore_2.4.0_R_x86_64-unknown-linux-gnu.tar.gz
 .
 .
 .

4. Change to the new directory:

$ cd ORCH2.4.0

5. Install the packages in the exact order shown here:

R --vanilla CMD INSTALL OREbase_1.4_R_x86_64-unknown-linux-gnu.tar.gz
R --vanilla CMD INSTALL OREstats_1.4_R_x86_64-unknown-linux-gnu.tar.gz
R --vanilla CMD INSTALL OREmodels_1.4_R_x86_64-unknown-linux-gnu.tar.gz
R --vanilla CMD INSTALL OREserver_1.4_R_x86_64-unknown-linux-gnu.tar.gz
R --vanilla CMD INSTALL ORCHcore_2.4.0_R_x86_64-unknown-linux-gnu.tar.gz
R --vanilla CMD INSTALL ORCHstats_2.4.0_R_x86_64-unknown-linux-gnu.tar.gz
R --vanilla CMD INSTALL ORCH_2.4.0_R_x86_64-unknown-linux-gnu.tar.gz

6. You must also install these packages on all other nodes of the cluster:

■ OREbase

■ OREmodels

■ OREserver

■ OREstats

The following examples use the dcli utility, which is available on Oracle Big Data
Appliance but not on third-party clusters, to copy and install the OREserver
package:

$ dcli -C -f OREserver_1.4_R_x86_64-unknown-linux-gnu.tar.gz -d /tmp/
OREserver_1.4_R_x86_64-unknown-linux-gnu.tar.gz

$ dcli -C " R --vanilla CMD INSTALL /tmp/OREserver_1.4_R_x86_
64-unknown-linux-gnu.tar.gz"

Installing Additional R Packages
Your Hadoop cluster must have libpng-devel installed on every node. If you are
using a cluster running on commodity hardware, then you can follow the same basic
procedures. However, you cannot use the dcli utility to replicate the commands
across all nodes. See Oracle Big Data Appliance Owner's Guide for the syntax of the dcli
utility.

To install libpng-devel:

1. Log in as root to any node in your Hadoop cluster.

2. Check whether libpng-devel is already installed:

dcli rpm -qi libpng-devel
bda1node01: package libpng-devel is not installed
bda1node02: package libpng-devel is not installed
 .
 .
 .

Oracle R Advanced Analytics for Hadoop Setup

1-20 Oracle Big Data Connectors User's Guide

If the package is already installed on all servers, then you can skip this procedure.

3. If you need a proxy server to go outside a firewall, then set the HTTP_PROXY
environment variable. This example uses dcli, which is available only on Oracle
Big Data Appliance:

dcli export HTTP_PROXY="http://proxy.example.com"

4. Change to the yum directory:

cd /etc/yum.repos.d

5. Download and configure the appropriate configuration file for your version of
Linux:

For Enterprise Linux 5 (EL5):

a. Download the yum configuration file:

wget http://public-yum.oracle.com/public-yum-el5.repo

b. Open public-yum-el5.repo in a text editor and make these changes:

Under el5_latest, set enabled=1

Under el5_addons, set enabled=1

c. Save your changes and exit.

d. Copy the file to the other Oracle Big Data Appliance servers:

dcli -d /etc/yum.repos.d -f public-yum-el5.repo

For Oracle Linux 6 (OL6):

a. Download the yum configuration file:

wget http://public-yum.oracle.com/public-yum-ol6.repo

b. Open public-yum-ol6.repo in a text editor and make these changes:

Under ol6_latest, set enabled=1

Under ol6_addons, set enabled=1

c. Save your changes and exit.

d. Copy the file to the other Oracle Big Data Appliance servers:

dcli -d /etc/yum.repos.d -f public-yum-ol6.repo

6. Install the package on all servers:

dcli yum -y install libpng-devel
bda1node01: Loaded plugins: rhnplugin, security
bda1node01: Repository 'bda' is missing name in configuration, using id
bda1node01: This system is not registered with ULN.
bda1node01: ULN support will be disabled.
bda1node01: http://bda1node01-master.abcd.com/bda/repodata/repomd.xml:
bda1node01: [Errno 14] HTTP Error 502: notresolvable
bda1node01: Trying other mirror.
 .
 .
 .
bda1node01: Running Transaction
bda1node01: Installing : libpng-devel 1/2

Oracle R Advanced Analytics for Hadoop Setup

Getting Started with Oracle Big Data Connectors 1-21

bda1node01: Installing : libpng-devel 2/2

bda1node01: Installed:
bda1node01: libpng-devel.i386 2:1.2.10-17.el5_8 ibpng-devel.x86_64
2:1.2.10-17.el5_8

bda1node01: Complete!
bda1node02: Loaded plugins: rhnplugin, security
 .
 .
 .

7. Verify that the installation was successful on all servers:

dcli rpm -qi libpng-devel
bda1node01: Name : libpng-devel Relocations: (not relocatable)
bda1node01: Version : 1.2.10 Vendor: Oracle America
bda1node01: Release : 17.el5_8 Build Date: Wed 25 Apr 2012 06:51:15 AM
PDT
bda1node01: Install Date: Tue 05 Feb 2013 11:41:14 AM PST Build Host:
ca-build56.abcd.com
bda1node01: Group : Development/Libraries Source RPM:
libpng-1.2.10-17.el5_8.src.rpm
bda1node01: Size : 482483 License: zlib
bda1node01: Signature : DSA/SHA1, Wed 25 Apr 2012 06:51:41 AM PDT, Key ID
66ced3de1e5e0159
bda1node01: URL : http://www.libpng.org/pub/png/
bda1node01: Summary : Development tools for programs to manipulate PNG
image format files.
bda1node01: Description :
bda1node01: The libpng-devel package contains the header files and static
bda1node01: libraries necessary for developing programs using the PNG (Portable
bda1node01: Network Graphics) library.
 .
 .
 .

Providing Remote Client Access to R Users
Whereas R users will run their programs as MapReduce jobs on the Hadoop cluster,
they do not typically have individual accounts on that platform. Instead, an external
Linux server provides remote access.

Software Requirements for Remote Client Access
To provide access to a Hadoop cluster to R users, install these components on a Linux
server:

■ The same version of Hadoop as your Hadoop cluster; otherwise, unexpected
issues and failures can occur

■ The same version of Sqoop as your Hadoop cluster; required only to support
copying data in and out of Oracle databases

■ Mahout; required only for the orch.ls function with the Mahout ALS-WS
algorithm

■ The same version of the Java Development Kit (JDK) as your Hadoop cluster

■ Oracle R distribution 3.0.1 with all base libraries

■ ORCH R package

Oracle R Advanced Analytics for Hadoop Setup

1-22 Oracle Big Data Connectors User's Guide

To provide access to database objects, you must have the Oracle Advanced Analytics
option to Oracle Database. Then you can install this additional component on the
Hadoop client:

■ Oracle R Enterprise Client Packages

Configuring the Server as a Hadoop Client
You must install Hadoop on the client and minimally configure it for HDFS client use.

To install and configure Hadoop on the client system:

1. Install and configure CDH5 or Apache Hadoop 0.20.2 on the client system. This
system can be the host for Oracle Database. If you are using Oracle Big Data
Appliance, then complete the procedures for providing remote client access in the
Oracle Big Data Appliance Software User's Guide. Otherwise, follow the installation
instructions provided by the distributor (Cloudera or Apache).

2. Log in to the client system as an R user.

3. Open a Bash shell and enter this Hadoop file system command:

$HADOOP_HOME/bin/hdfs dfs -ls /user

4. If you see a list of files, then you are done. If not, then ensure that the Hadoop
cluster is up and running. If that does not fix the problem, then you must debug
your client Hadoop installation.

Installing Sqoop on a Hadoop Client
Complete the same procedures on the client system for installing and configuring
Sqoop as those provided in "Installing Sqoop on a Third-Party Hadoop Cluster" on
page 1-17.

Installing R on a Hadoop Client
You can download R 2.13.2 and get the installation instructions from the Oracle R
Distribution website at

http://oss.oracle.com/ORD/

When you are done, ensure that users have the necessary permissions to connect to the
Linux server and run R.

You may also want to install RStudio Server to facilitate access by R users. See the
RStudio website at

http://rstudio.org/

Installing the ORCH Package on a Hadoop Client
To install ORCH on your Hadoop client system:

1. Download the ORCH package and unzip it on the client system.

2. Change to the installation directory.

3. Run the client script:

./install-client.sh

Installing the Oracle R Enterprise Client Packages (Optional)
To support full access to Oracle Database using R, install the Oracle R Enterprise
Release 1.4 client packages. Without them, Oracle R Advanced Analytics for Hadoop

Oracle Data Integrator

Getting Started with Oracle Big Data Connectors 1-23

does not have access to the advanced statistical algorithms provided by Oracle R
Enterprise.

Oracle Data Integrator
For the instructions to set up and use Oracle Data Integrator refer to Hadoop chapter of
Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator.

See Also: Oracle R Enterprise User's Guide for information about
installing R and Oracle R Enterprise

Oracle Data Integrator

1-24 Oracle Big Data Connectors User's Guide

Part II
Part II Oracle Database Connectors

This part contains the following chapters:

■ Chapter 2, "Oracle SQL Connector for Hadoop Distributed File System"

■ Chapter 3, "Oracle Loader for Hadoop"

2

Oracle SQL Connector for Hadoop Distributed File System 2-1

2 Oracle SQL Connector for Hadoop Distributed
File System

This chapter describes how to use Oracle SQL Connector for Hadoop Distributed File
System (HDFS) to facilitate data access between Hadoop and Oracle Database.

This chapter contains the following sections:

■ About Oracle SQL Connector for HDFS

■ Getting Started With Oracle SQL Connector for HDFS

■ Configuring Your System for Oracle SQL Connector for HDFS

■ Using the ExternalTable Command-Line Tool

■ Creating External Tables

■ Publishing the HDFS Data Paths

■ Exploring External Tables and Location Files

■ Dropping Database Objects Created by Oracle SQL Connector for HDFS

■ More About External Tables Generated by the ExternalTable Tool

■ Configuring Oracle SQL Connector for HDFS

■ Performance Tips for Querying Data in HDFS

About Oracle SQL Connector for HDFS
Using Oracle SQL Connector for HDFS, you can use Oracle Database to access and
analyze data residing in Apache Hadoop in these formats:

■ Data Pump files in HDFS

■ Delimited text files in HDFS

■ Delimited text files in Apache Hive tables

For other file formats, such as JSON files, you can stage the input as delimited text in a
new Hive table and then use Oracle SQL Connector for HDFS. Partitioned Hive tables
are supported, enabling you to represent a subset of Hive table partitions in Oracle
Database, instead of the entire Hive table.

Oracle SQL Connector for HDFS uses external tables and database views to provide
Oracle Database with read access to Hive tables, and to delimited text files and Data
Pump files in HDFS. An external table is an Oracle Database object that identifies the
location of data outside of a database. Oracle Database accesses the data by using the
metadata provided when the external table was created. Oracle SQL Connector for

Getting Started With Oracle SQL Connector for HDFS

2-2 Oracle Big Data Connectors User's Guide

HDFS creates database views over external tables to support access to partitioned Hive
tables. By querying the external tables or views, you can access data stored in HDFS
and Hive tables as if that data were stored in tables in an Oracle database.

To create these objects in Oracle Database, you use the ExternalTable command-line
tool provided with Oracle SQL Connector for HDFS. You provide ExternalTable with
information about the data source in Hadoop and about your schema in an Oracle
Database. You provide this information either as options to the ExternalTable
command or in an XML file.

When the external table is ready, you can query the data the same as any other
database table. You can query and join data in HDFS or a Hive table with other
database-resident data.

You can also perform bulk loads of data into Oracle database tables using SQL.You
may prefer that the data resides in an Oracle database—all of it or just a selection—if it
is queried routinely. Oracle SQL Connector for HDFS functions as a Hadoop client
running on the Oracle database and uses the external table preprocessor hdfs_stream
to access data in HDFS.

Getting Started With Oracle SQL Connector for HDFS
The following list identifies the basic steps that you take when using Oracle SQL
Connector for HDFS.

1. Log in to a system where Oracle SQL Connector for HDFS is installed, which can
be the Oracle Database system, a node in the Hadoop cluster, or a system set up as
a remote client for the Hadoop cluster.

See "Installing and Configuring a Hadoop Client on the Oracle Database System"
on page 1-5.

2. The first time you use Oracle SQL Connector for HDFS, ensure that the software is
configured.

See "Configuring Your System for Oracle SQL Connector for HDFS" on page 2-6.
You might also need to edit hdfs_stream if your environment is unique. See
"Installing Oracle SQL Connector for HDFS" on page 1-6.

3. If you are connecting to a secure cluster, then run kinit to authenticate yourself.

See "Using Oracle SQL Connector for HDFS on a Secure Hadoop Cluster" on
page 1-10.

4. Create an XML document describing the connections and the data source, unless
you are providing these properties in the ExternalTable command.

See "Exploring External Tables and Location Files" on page 2-23.

5. Create a shell script containing an ExternalTable command.

See "Using the ExternalTable Command-Line Tool" on page 2-7.

6. Run the shell script.

7. If the job fails, then use the diagnostic messages in the output to identify and
correct the error. Depending on how far the job progressed before failing, you may
need to delete the table definition from the Oracle database before rerunning the
script.

8. After the job succeeds, connect to Oracle Database as the owner of the external
table. Query the table to ensure that the data is accessible.

Getting Started With Oracle SQL Connector for HDFS

Oracle SQL Connector for Hadoop Distributed File System 2-3

9. If the data will be queried frequently, then you may want to load it into a database
table to improve querying performance. External tables do not have indexes or
partitions.

If you want the data to be compressed as it loads into the table, then create the
table with the COMPRESS option.

10. To delete the Oracle Database objects created by Oracle SQL Connector for HDFS,
use the -drop command.

See "Dropping Database Objects Created by Oracle SQL Connector for HDFS" on
page 2-24.

Example 2–1 illustrates these steps.

Example 2–1 Accessing HDFS Data Files from Oracle Database

$ cat moviefact_hdfs.sh
Add environment variables
export OSCH_HOME="/u01/connectors/orahdfs-3.2.0"

hadoop jar $OSCH_HOME/jlib/orahdfs.jar \
 oracle.hadoop.exttab.ExternalTable \
 -conf /home/oracle/movies/moviefact_hdfs.xml \
 -createTable

$ cat moviefact_hdfs.xml
<?xml version="1.0"?>
 <configuration>
 <property>
 <name>oracle.hadoop.exttab.tableName</name>
 <value>MOVIE_FACTS_EXT</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.locationFileCount</name>
 <value>4</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.dataPaths</name>
 <value>/user/oracle/moviework/data/part*</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.fieldTerminator</name>
 <value>\u0009</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.defaultDirectory</name>
 <value>MOVIEDEMO_DIR</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.columnNames</name>
 <value>CUST_ID,MOVIE_ID,GENRE_ID,TIME_ID,RECOMMENDED,ACTIVITY_
ID,RATING,SALES</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.colMap.TIME_ID.columnType</name>
 <value>TIMESTAMP</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.colMap.timestampMask</name>
 <value>YYYY-MM-DD:HH:MI:SS</value>

Getting Started With Oracle SQL Connector for HDFS

2-4 Oracle Big Data Connectors User's Guide

 </property>
 <property>
 <name>oracle.hadoop.exttab.colMap.RECOMMENDED.columnType</name>
 <value>NUMBER</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.colMap.ACTIVITY_ID.columnType</name>
 <value>NUMBER</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.colMap.RATING.columnType</name>
 <value>NUMBER</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.colMap.SALES.columnType</name>
 <value>NUMBER</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.sourceType</name>
 <value>text</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.url</name>
 <value>jdbc:oracle:thin:@localhost:1521:orcl</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.user</name>
 <value>MOVIEDEMO</value>
 </property>
</configuration>

$ sh moviefact_hdfs.sh
Oracle SQL Connector for HDFS Release 3.2.0 - Production

Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.

[Enter Database Password: password]
The create table command succeeded.

CREATE TABLE "MOVIEDEMO"."MOVIE_FACTS_EXT"
(
 "CUST_ID" VARCHAR2(4000),
 "MOVIE_ID" VARCHAR2(4000),
 "GENRE_ID" VARCHAR2(4000),
 "TIME_ID" TIMESTAMP(9),
 "RECOMMENDED" NUMBER,
 "ACTIVITY_ID" NUMBER,
 "RATING" NUMBER,
 "SALES" NUMBER
)
ORGANIZATION EXTERNAL
(
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY "MOVIEDEMO_DIR"
 ACCESS PARAMETERS
 (
 RECORDS DELIMITED BY 0X'0A'
 CHARACTERSET AL32UTF8
 PREPROCESSOR "OSCH_BIN_PATH":'hdfs_stream'
 FIELDS TERMINATED BY 0X'09'

Getting Started With Oracle SQL Connector for HDFS

Oracle SQL Connector for Hadoop Distributed File System 2-5

 MISSING FIELD VALUES ARE NULL
 (
 "CUST_ID" CHAR(4000),
 "MOVIE_ID" CHAR(4000),
 "GENRE_ID" CHAR(4000),
 "TIME_ID" CHAR,
 "RECOMMENDED" CHAR,
 "ACTIVITY_ID" CHAR,
 "RATING" CHAR,
 "SALES" CHAR
)
)
 LOCATION
 (
 'osch-20141114064206-5250-1',
 'osch-20141114064206-5250-2',
 'osch-20141114064206-5250-3',
 'osch-20141114064206-5250-4'
)
) PARALLEL REJECT LIMIT UNLIMITED;

The following location files were created.

osch-20141114064206-5250-1 contains 1 URI, 12754882 bytes

 12754882
hdfs://localhost.localdomain:8020/user/oracle/moviework/data/part-00001

osch-20141114064206-5250-2 contains 1 URI, 438 bytes

 438
hdfs://localhost.localdomain:8020/user/oracle/moviework/data/part-00002

osch-20141114064206-5250-3 contains 1 URI, 432 bytes

 432
hdfs://localhost.localdomain:8020/user/oracle/moviework/data/part-00003

osch-20141114064206-5250-4 contains 1 URI, 202 bytes

 202
hdfs://localhost.localdomain:8020/user/oracle/moviework/data/part-00004

$ sqlplus moviedemo

SQL*Plus: Release 12.1.0.1.0 Production on Fri Apr 18 09:24:18 2014

Copyright (c) 1982, 2013, Oracle. All rights reserved.

Enter password: password
Last Successful login time: Thu Apr 17 2014 18:42:01 -05:00

Connected to:
Oracle Database 12c Enterprise Edition Release 12.1.0.1.0 - 64bit Production
With the Partitioning, OLAP, Advanced Analytics and Real Application Testing
options

SQL> DESCRIBE movie_facts_ext;
 Name Null? Type
 --- -------- ----------------------------

Configuring Your System for Oracle SQL Connector for HDFS

2-6 Oracle Big Data Connectors User's Guide

 CUST_ID VARCHAR2(4000)
 MOVIE_ID VARCHAR2(4000)
 GENRE_ID VARCHAR2(4000)
 TIME_ID TIMESTAMP(9)
 RECOMMENDED NUMBER
 ACTIVITY_ID NUMBER
 RATING NUMBER
 SALES NUMBER

SQL> CREATE TABLE movie_facts AS SELECT * FROM movie_facts_ext;

Table created.

SQL> SELECT movie_id, time_id, recommended, rating FROM movie_facts WHERE rownum <
5;

MOVIE_ID TIME_ID RECOMMENDED RATING
-------- -------------------------------- ----------- ----------
205 03-DEC-10 03.14.54.000000000 AM 1 1
77 14-AUG-11 10.46.55.000000000 AM 1 3
116 24-NOV-11 05.43.00.000000000 AM 1 5
141 01-JAN-11 05.17.57.000000000 AM 1 4

Configuring Your System for Oracle SQL Connector for HDFS
You can run the ExternalTable command-line tool provided with Oracle SQL
Connector for HDFS on either the Oracle Database system or the Hadoop cluster:

■ For Hive sources, log in to either a node in the Hadoop cluster or a system set up
as a Hadoop client for the cluster.

■ For text and Data Pump format files, log in to either the Oracle Database system or
a node in the Hadoop cluster.

Oracle SQL Connector for HDFS requires additions to the HADOOP_CLASSPATH
environment variable on the system where you log in to run the tool. Your system
administrator may have set them up for you when creating your account, or may have
left that task for you. See "Setting Up User Accounts on the Oracle Database System"
on page 1-10.

Setting up the environment variables:

■ Verify that HADOOP_CLASSPATH includes the path to the JAR files for Oracle SQL
Connector for HDFS:

path/orahdfs-3.2.0/jlib/*

■ If you are logged in to a Hadoop cluster with Hive data sources, then verify that
HADOOP_CLASSPATH also includes the Hive JAR files and conf directory. For
example:

/usr/lib/hive/lib/*
/etc/hive/conf

■ For your convenience, you can create an OSCH_HOME environment variable. The
following is the Bash command for setting it on Oracle Big Data Appliance:

$ export OSCH_HOME="/opt/oracle/orahdfs-3.2.0"

Using the ExternalTable Command-Line Tool

Oracle SQL Connector for Hadoop Distributed File System 2-7

Using Oracle SQL Connector for HDFS with Oracle Big Data Appliance
and Oracle Exadata

Oracle SQL Connector for HDFS is a command-line utility that accepts generic
command line arguments supported by the org.apache.hadoop.util.Tool interface. It
also provides a preprocessor for Oracle external tables. See Oracle Big Data Appliance
Software User's Guide for instructions on configuring Oracle Exadata Database Machine
for Use with Oracle Big Data Appliance.

Using the ExternalTable Command-Line Tool
Oracle SQL Connector for HDFS provides a command-line tool named
ExternalTable. This section describes the basic use of this tool. See "Creating External
Tables" on page 2-9 for the command syntax that is specific to your data source format.

About ExternalTable
The ExternalTable tool uses the values of several properties to do the following tasks:

■ Create an external table

■ Populate the location files

■ Publish location files to an existing external table

■ List the location files

■ Describe an external table

You can specify these property values in an XML document or individually on the
command line. See "Configuring Oracle SQL Connector for HDFS" on page 2-28..

ExternalTable Command-Line Tool Syntax
This is the full syntax of the ExternalTable command-line tool, which is run using the
hadoop command:

hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
[-conf config_file]... \
[-D property=value]... \
-createTable [--noexecute [--output filename.sql]]
 | -drop [--noexecute]
 | -describe
 | -publish [--noexecute]
 | -listlocations [--details]
 | -getDDL

You can either create the OSCH_HOME environment variable or replace OSCH_HOME in the
command syntax with the full path to the installation directory for Oracle SQL
Connector for HDFS. On Oracle Big Data Appliance, this directory is:

See Also:

■ "Oracle SQL Connector for Hadoop Distributed File System
Setup" on page 1-4 for instructions for installing the software and
setting up user accounts on both systems.

■ OSCH_HOME/doc/README.txt for information about known
problems with Oracle SQL Connector for HDFS.

Using the ExternalTable Command-Line Tool

2-8 Oracle Big Data Connectors User's Guide

/opt/oracle/orahdfs-version

For example, you might run the ExternalTable command-line tool with a command
like this:

hadoop jar /opt/oracle/orahdfs-3.2.0/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
 .
 .
 .

Generic Options and User Commands

-conf config_file
Identifies the name of an XML configuration file containing properties needed by the
command being executed. See "Configuring Oracle SQL Connector for HDFS" on
page 2-28.

-D property=value
Assigns a value to a specific property.

-createTable [--noexecute [--output filename]]
Creates an external table definition and publishes the data URIs to the location files of
the external table. The output report shows the DDL used to create the external table
and lists the contents of the location files. Oracle SQL Connector for HDFS also checks
the database to ensure that the required database directories exist and that you have
the necessary permissions.

For partitioned Hive tables, Oracle SQL Connector for HDFS creates external tables,
views, and a metadata table. See Table 2–2.

Specify the metadata table name for partitioned Hive tables, or the external table name
for all other data sources.

Use the --noexecute option to see the execution plan of the command. The operation
is not executed, but the report includes the details of the execution plan and any
errors. The --output option writes the table DDL from the -createTable command to
a file. Oracle recommends that you first execute a -createTable command with
--noexecute.

-drop [--noexecute]
Deletes one or more Oracle Database objects created by Oracle SQL Connector for
HDFS to support a particular data source. Specify the metadata table name for
partitioned Hive tables, or the external table name for all other data sources. An error
occurs if you attempt to drop a table or view that Oracle SQL Connector for HDFS did
not create.

Use the --noexecute option to list the objects to be deleted.

-describe
Provides information about the Oracle Database objects created by Oracle SQL
Connector for HDFS. Use this command instead of -getDDL or -listLocations.

-publish [--noexecute]
Publishes the data URIs to the location files of an existing external table. Use this
command after adding new data files, so that the existing external table can access
them.

Creating External Tables

Oracle SQL Connector for Hadoop Distributed File System 2-9

Use the --noexecute option to see the execution plan of the command. The operation
is not executed, but the report shows the planned SQL ALTER TABLE command and
location files. The report also shows any errors.

Oracle recommends that you first execute a -publish command with --noexecute.

See "Publishing the HDFS Data Paths" on page 2-22.

-listLocations [--details]
Shows the location file content as text. With the --details option, this command
provides a detailed listing. This command is deprecated in release 3.0. Use -describe
instead.

-getDDL
Prints the table definition of an existing external table. This command is deprecated in
release 3.0. Use -describe instead.

Creating External Tables
You can create external tables automatically using the ExternalTable tool provided in
Oracle SQL Connector for HDFS.

Creating External Tables with the ExternalTable Tool
To create an external table using the ExternalTable tool, follow the instructions for
your data source:

■ Creating External Tables from Data Pump Format Files

■ Creating External Tables from Hive Tables

■ Creating External Tables from Delimited Text Files

When the ExternalTable -createTable command finishes executing, the external
table is ready for use. ExternalTable also manages the location files for the external
table. See "Location File Management" on page 2-27.

To create external tables manually, follow the instructions in "Creating External Tables
in SQL" on page 2-22.

ExternalTable Syntax for -createTable
Use the following syntax to create an external table and populate its location files:

hadoop jar OSCH_HOME/jlib/orahdfs.jar oracle.hadoop.exttab.ExternalTable \
[-conf config_file]... \
[-D property=value]... \
-createTable [--noexecute]

Creating External Tables from Data Pump Format Files
Oracle SQL Connector for HDFS supports only Data Pump files produced by Oracle
Loader for Hadoop, and does not support generic Data Pump files produced by Oracle
Utilities.

Oracle SQL Connector for HDFS creates the external table definition for Data Pump
files by using the metadata from the Data Pump file header. It uses the ORACLE_LOADER

See Also: "Syntax Conventions" on page x

See Also: "ExternalTable Command-Line Tool Syntax" on page 2-7

Creating External Tables

2-10 Oracle Big Data Connectors User's Guide

access driver with the preprocessor access parameter. It also uses a special access
parameter named EXTERNAL VARIABLE DATA, which enables ORACLE_LOADER to read the
Data Pump format files generated by Oracle Loader for Hadoop.

To delete the external tables and location files created by Oracle SQL Connector for
HDFS, use the -drop command. See "Dropping Database Objects Created by Oracle
SQL Connector for HDFS" on page 2-24.

Required Properties
These properties are required:

■ oracle.hadoop.exttab.tableName

■ oracle.hadoop.exttab.defaultDirectory

■ oracle.hadoop.exttab.dataPaths

■ oracle.hadoop.exttab.sourceType=datapump

■ oracle.hadoop.connection.url

■ oracle.hadoop.connection.user

See "Configuring Oracle SQL Connector for HDFS" on page 2-28 for descriptions of the
properties used for this data source.

Optional Properties
This property is optional:

■ oracle.hadoop.exttab.logDirectory

■ oracle.hadoop.exttab.createLogFiles

■ oracle.hadoop.exttab.createBadFiles

Defining Properties in XML Files for Data Pump Format Files
Example 2–2 is an XML template containing the properties that describe a Data Pump
file. To use the template, cut and paste it into a text file, enter the appropriate values to
describe your Data Pump file, and delete any optional properties that you do not need.
For more information about using XML templates, see "Creating a Configuration File"
on page 2-28.

Example 2–2 XML Template with Properties for a Data Pump Format File

<?xml version="1.0"?>

<!-- Required Properties -->

<configuration>
 <property>
 <name>oracle.hadoop.exttab.tableName</name>
 <value>value</value>
 </property>

Note: Oracle SQL Connector for HDFS requires a patch to Oracle
Database 11.2.0.2 before the connector can access Data Pump files
produced by Oracle Loader for Hadoop. To download this patch, go to
http://support.oracle.com and search for bug 14557588.

Release 11.2.0.3 and later releases do not require this patch.

Creating External Tables

Oracle SQL Connector for Hadoop Distributed File System 2-11

 <property>
 <name>oracle.hadoop.exttab.defaultDirectory</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.dataPaths</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.sourceType</name>
 <value>datapump</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.url</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.user</name>
 <value>value</value>
 </property>

<!-- Optional Properties -->

 <property>
 <name>oracle.hadoop.exttab.logDirectory</name>
 <value>value</value>
 </property>
</configuration>

Example
Example 2–3 creates an external table named SALES_DP_XTAB to read Data Pump files.

Example 2–3 Defining an External Table for Data Pump Format Files

Log in as the operating system user that Oracle Database runs under (typically the
oracle user), and create a file-system directory. For Oracle RAC, you must create a
clusterwide directory on a distributed file system.

$ mkdir /data/sales_dp_dir

Create a database directory and grant read and write access to it:

$ sqlplus / as sysdba
SQL> CREATE OR REPLACE DIRECTORY sales_dp_dir AS '/data/sales_dp_dir'
SQL> GRANT READ, WRITE ON DIRECTORY sales_dp_dir TO scott;

Create the external table:

$ export OSCH_HOME="/opt/oracle/orahdfs-3.2.0"
$ export HADOOP_CLASSPATH="$HADOOP_CLASSPATH:$OSCH_HOME/jlib/*"
$ hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
-D oracle.hadoop.exttab.tableName=SALES_DP_XTAB \
-D oracle.hadoop.exttab.sourceType=datapump \
-D oracle.hadoop.exttab.dataPaths=hdfs:///user/scott/olh_sales_dpoutput/ \
-D oracle.hadoop.exttab.defaultDirectory=SALES_DP_DIR \
-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=SCOTT \
-createTable

Creating External Tables

2-12 Oracle Big Data Connectors User's Guide

Creating External Tables from Hive Tables
Oracle SQL Connector for HDFS creates the external table definition from a Hive table
by contacting the Hive metastore client to retrieve information about the table columns
and the location of the table data. In addition, the Hive table data paths are published
to the location files of the Oracle external table.

To read Hive table metadata, Oracle SQL Connector for HDFS requires that the Hive
JAR files are included in the HADOOP_CLASSPATH variable. Oracle SQL Connector for
HDFS must be installed and running on a computer with a working Hive client.

Ensure that you add the Hive configuration directory to the HADOOP_CLASSPATH
environment variable. You must have a correctly functioning Hive client.

For Hive managed tables, the data paths come from the warehouse directory.

For Hive external tables, the data paths from an external location in HDFS are
published to the location files of the Oracle external table. Hive external tables can
have no data, because Hive does not check if the external location is defined when the
table is created. If the Hive table is empty, then one location file is published with just a
header and no data URIs.

The Oracle external table is not a "live" Hive table. After changes are made to a Hive
table, you must use the ExternalTable tool to drop the existing external table and
create a new one.

To delete the external tables and location files created by Oracle SQL Connector for
HDFS, use the -drop command. See "Dropping Database Objects Created by Oracle
SQL Connector for HDFS" on page 2-24.

Hive Table Requirements
Oracle SQL Connector for HDFS supports Hive tables that are defined using ROW
FORMAT DELIMITED and FILE FORMAT TEXTFILE clauses. Both Hive-managed tables and
Hive external tables are supported.

Oracle SQL Connector for HDFS also supports partitioned Hive tables. In this case
Oracle SQL Connector for HDFS creates one or more external tables and database
views. See "Creating External Tables from Partitioned Hive Tables" on page 2-15.

Hive tables can be either bucketed or not bucketed. All primitive types from Hive
0.10.0 are supported.

Data Type Mappings
Table 2–1 shows the default data-type mappings between Hive and Oracle. To change
the data type of the target columns created in the Oracle external table, set the
oracle.hadoop.exttab.hive.columnType.* properties listed under "Optional
Properties" on page 2-13..

Table 2–1 Hive Data Type Mappings

Data Type of Source Hive Column Default Data Type of Target Oracle Column

INT, BIGINT, SMALLINT, TINYINT INTEGER

DECIMAL NUMBER

DECIMAL(p,s) NUMBER(p,s)

DOUBLE, FLOAT NUMBER

DATE DATE with format mask YYYY-MM-DD

Creating External Tables

Oracle SQL Connector for Hadoop Distributed File System 2-13

Required Properties
These properties are required for Hive table sources:

■ oracle.hadoop.exttab.tableName

■ oracle.hadoop.exttab.defaultDirectory

■ oracle.hadoop.exttab.sourceType=hive

■ oracle.hadoop.exttab.hive.tableName

■ oracle.hadoop.exttab.hive.databaseName

■ oracle.hadoop.connection.url

■ oracle.hadoop.connection.user

See "Configuring Oracle SQL Connector for HDFS" on page 2-28 for descriptions of the
properties used for this data source.

Optional Properties
These properties are optional for Hive table sources:

■ oracle.hadoop.exttab.hive.columnType.*

■ oracle.hadoop.exttab.hive.partitionFilter

■ oracle.hadoop.exttab.locationFileCount

■ oracle.hadoop.exttab.colMap.columnLength

■ oracle.hadoop.exttab.colMap.column_name.columnLength

■ oracle.hadoop.exttab.colMap.columnType

■ oracle.hadoop.exttab.colMap.column_name.columnType

■ oracle.hadoop.exttab.colMap.dateMask

■ oracle.hadoop.exttab.colMap.column_name.dateMask

■ oracle.hadoop.exttab.colMap.fieldLength

■ oracle.hadoop.exttab.colMap.column_name.fieldLength

■ oracle.hadoop.exttab.colMap.timestampMask

■ oracle.hadoop.exttab.colMap.column_name.timestampMask

■ oracle.hadoop.exttab.colMap.timestampTZMask

■ oracle.hadoop.exttab.colMap.column_name.timestampTZMask

TIMESTAMP TIMESTAMP with format mask
YYYY-MM-DD HH24:MI:SS.FF

BOOLEAN VARCHAR2(5)

CHAR(size) CHAR(size)

STRING VARCHAR2(4000)

VARCHAR VARCHAR2(4000)

VARCHAR(size) VARCHAR2(size)

Table 2–1 (Cont.) Hive Data Type Mappings

Data Type of Source Hive Column Default Data Type of Target Oracle Column

Creating External Tables

2-14 Oracle Big Data Connectors User's Guide

■ oracle.hadoop.exttab.createLogFiles

■ oracle.hadoop.exttab.createBadFiles

Defining Properties in XML Files for Hive Tables
Example 2–4 is an XML template containing the properties that describe a Hive table.
To use the template, cut and paste it into a text file, enter the appropriate values to
describe your Hive table, and delete any optional properties that you do not need. For
more information about using XML templates, see "Creating a Configuration File" on
page 2-28.

Example 2–4 XML Template with Properties for a Hive Table

<?xml version="1.0"?>

<!-- Required Properties -->

<configuration>
 <property>
 <name>oracle.hadoop.exttab.tableName</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.defaultDirectory</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.sourceType</name>
 <value>hive</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.hive.partitionFilter</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.hive.tableName</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.hive.databaseName</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.url</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.user</name>
 <value>value</value>
 </property>

<!-- Optional Properties -->

 <property>
 <name>oracle.hadoop.exttab.locationFileCount</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.hive.columnType.TYPE</name>

Creating External Tables

Oracle SQL Connector for Hadoop Distributed File System 2-15

 <value>value</value>
 </property>
</configuration>

Example
Example 2–5 creates an external table named SALES_HIVE_XTAB to read data from a
Hive table. The example defines all the properties on the command line instead of in
an XML file.

Example 2–5 Defining an External Table for a nonpartitioned Hive Table

Log in as the operating system user that Oracle Database runs under (typically the
oracle user), and create a file-system directory:

$ mkdir /data/sales_hive_dir

Create a database directory and grant read and write access to it:

$ sqlplus / as sysdba
SQL> CREATE OR REPLACE DIRECTORY sales_hive_dir AS '/data/sales_hive_dir'
SQL> GRANT READ, WRITE ON DIRECTORY sales_hive_dir TO scott;

Create the external table:

$ export OSCH_HOME="/opt/oracle/orahdfs-3.2.0"
$ export HADOOP_CLASSPATH="$HADOOP_CLASSPATH:$OSCH_
HOME/jlib/*:/usr/lib/hive/lib/*:/etc/hive/conf"

$ hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
-D oracle.hadoop.exttab.tableName=SALES_HIVE_XTAB \
-D oracle.hadoop.exttab.sourceType=hive \
-D oracle.hadoop.exttab.locationFileCount=2 \
-D oracle.hadoop.exttab.hive.tableName=sales_country_us \
-D oracle.hadoop.exttab.hive.databaseName=salesdb \
-D oracle.hadoop.exttab.defaultDirectory=SALES_HIVE_DIR \
-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=SCOTT \
-createTable

Creating External Tables from Partitioned Hive Tables
Oracle SQL Connector for HDFS supports partitioned Hive tables, enabling you to
query a single partition, a range of partitions, or all partitions. You can represent all
Hive partitions or a subset of them in Oracle Database.

Database Objects that Support Access to Partitioned Hive Tables To support a
partitioned Hive table, Oracle SQL Connector for HDFS creates the objects described
in Table 2–2.

Note: For nonpartitioned Hive tables and other data sources the
value for property oracle.hadoop.exttab.tableName is the name of
the external table.

See Also: "Creating External Tables from Hive Tables" on page 2-12
for required properties, data type mappings, and other details
applicable to all Hive table access using Oracle SQL Connector for
HDFS.

Creating External Tables

2-16 Oracle Big Data Connectors User's Guide

For example, if a Hive table comprises five partitions, then Oracle SQL Connector for
HDFS creates five external tables, five views, and one metadata table in Oracle
Database.

To drop the objects described in Table 2–2 and the location files, use the -drop
command. See "Dropping Database Objects Created by Oracle SQL Connector for
HDFS" on page 2-24.

Querying the Metadata Table The metadata table provides critical information about
how to query the Hive table. Table 2–3 describes the columns of a metadata table.

The following SELECT statement queries a metadata table named HIVE_SALES_DATA:

Table 2–2 Oracle Database Objects for Supporting a Partitioned Hive Table

Database Object Description Naming Convention1

1 The "_n" suffixed with table name indicates a numeric value.

External Tables One for each Hive partition OSCHtable_name_n

For example, OSCHDAILY_1 and
OSCHDAILY_2

Views One for each external table. Used for
querying the Hive data.

table_name_n

For example, DAILY_1 and DAILY_
2

Metadata Table One for the Hive table. Identifies all
external tables and views associated
with a particular Hive table. Specify this
table when creating, describing, or
dropping these database objects.

table_name

For example, DAILY

Note: For partitioned Hive tables and other data sources the value
for property oracle.hadoop.exttab.tableName is the name of the
metadata table.

Table 2–3 Metadata Table Columns

Column Description

VIEW_NAME The Oracle Database view used to access a single Hive table partition.
The view contains both Hive table and partition columns.

EXT_TABLE_NAME An Oracle external table that represents a Hive table partition. The
external table contains only the Hive table columns and not the Hive
partition columns.

To access all the data in a Hive partition, use the corresponding Oracle
Database view.

HIVE_TABLE_NAME The partitioned Hive table being accessed through Oracle Database.

HIVE_DB_NAME The Hive database where the table resides.

HIVE_PART_FILTER The Hive partition filter used to select a subset of partitions for access
by Oracle Database. A NULL value indicates that all partitions are
accessed.

Partition Columns Each column used to partition the Hive table has a separate column in
the metadata table. For example, the metadata table has columns for
COUNTRY, STATE, and CITY for a Hive table partitioned by a combination
of COUNTRY, STATE, and CITY values.

Creating External Tables

Oracle SQL Connector for Hadoop Distributed File System 2-17

SQL> SELECT view_name, ext_table_name, Hive_table_name, \
 hive_db_name, country, city \
 FROM hive_sales_data \
 WHERE state = 'TEXAS';

The results of the query identify three views with data from cities in Texas:

VIEW_NAME EXT_TABLE_NAME HIVE_TABLE_NAME HIVE_DB_NAME COUNTRY CITY
--
HIVE_SALES_DATA_1 OSCHHIVE_SALES_DATA_1 hive_sales_data db_sales US AUSTIN
HIVE_SALES_DATA_2 OSCHHIVE_SALES_DATA_2 hive_sales_data db_sales US HOUSTON
HIVE_SALES_DATA_3 OSCHHIVE_SALES_DATA_3 hive_sales_data db_sales US DALLAS

The views include partition column values. Oracle recommends that you use the views
while querying a partitioned Hive table, as the external tables do not include the
partition column values.

Creating UNION ALL Views for Querying To facilitate querying, you can create UNION
ALL views over the individual partition views. Use the mkhive_unionall_view.sql
script, which is provided in the OSCH_HOME/example/sql directory. To maintain
performance, do not create UNION ALL views over more than 50 to 100 views
(depending on their size).

To use mkhive_unionall_view.sql, use the following syntax:

@mkhive_unionall_view[.sql] table schema view predicate

MKHIVE_UNIONALL_VIEW Script Parameters

table
The name of the metadata table in Oracle Database that represents a partitioned Hive
table. Required.

schema
The owner of the metadata table. Optional; defaults to your schema.

view
The name of the UNION ALL view created by the script. Optional; defaults to table_ua.

predicate
A WHERE condition used to select the partitions in the Hive table to include in the UNION
ALL view. Optional; defaults to all partitions.

Example 2–6 Union All Views for Partitioned Hive Tables

The following example creates a UNION ALL view named HIVE_SALES_DATA_UA, which
accesses all partitions listed in the HIVE_SALES_DATA metadata table:

SQL> @mkhive_unionall_view.sql HIVE_SALES_DATA null null null

This example creates a UNION ALL view named ALL_SALES, which accesses all partitions
listed in the HIVE_SALES_DATA metadata table:

SQL> @mkhive_unionall_view.sql HIVE_SALES_DATA null ALL_SALES null

The next example creates a UNION ALL view named TEXAS_SALES_DATA, which accesses
the rows of all partitions where STATE = 'TEXAS'.

SQL> @mkhive_unionallview.sql HIVE_SALES_DATA null TEXAS_SALES_DATA '(STATE =
''''TEXAS'''')'

Creating External Tables

2-18 Oracle Big Data Connectors User's Guide

Error Messages table name too long, max limit length
Cause: The names generated for the database objects exceed 30 characters.

Action: Specify a name that does not exceed 24 characters in the
oracle.hadoop.exttab.tableName property. Oracle SQL Connector for HDFS
generates external table names using the convention OSCHtable_name_n. See
Table 2–2.

table/view names containing string table_name found in schema schema_name
Cause: An attempt was made to create external tables for a partitioned Hive table,
but the data objects already exist.

Action: Use the hadoop -drop command to drop the existing tables and views,
and then retry the -createTable command. If this solution fails, then you might
have "dangling" objects. See "Dropping Dangling Objects" on page 2-18.

Dropping Dangling Objects Always use Oracle SQL Connector for HDFS commands
to manage objects created by the connector to support partitioned Hive tables.
Dangling objects are caused when you use the SQL drop table command to drop a
metadata table instead of the -drop command. If you are unable to drop the external
tables and views for a partitioned Hive table, then they are dangling objects.

Notice the schema and table names in the error message generated when you
attempted to drop the objects, and use them in the following procedure.

To drop dangling database objects:

1. Open a SQL session with Oracle Database, and connect as the owner of the
dangling objects.

2. Identify the location files of the external table by querying the ALL_EXTERNAL_
LOCATIONS and ALL_EXTERNAL_TABLES data dictionary views:

SELECT a.table_name, a.directory_name, a.location \
FROM all_external_locations a, all_external_tables b \
WHERE a.table_name = b.table_name AND a.table_name \
LIKE 'OSCHtable%' AND a.owner='schema';

In the LIKE clause of the previous syntax, replace table and schema with the
appropriate values.

In the output, the location file names have an osch- prefix, such as
osch-20140408014604-175-1.

3. Identify the external tables by querying the ALL_EXTERNAL_TABLES data dictionary
view:

SELECT table_name FROM all_external_tables \
WHERE table_name \
LIKE 'OSCHtable%' AND owner=schema;

4. Identify the database views by querying the ALL_VIEWS data dictionary view:

SELECT view_name FROM all_views
WHERE view_name
LIKE 'table%' AND owner='schema';

5. Inspect the tables, views, and location files to verify that they are not needed,
using commands like the following:

DESCRIBE schema.table;
SELECT * FROM schema.table;

Creating External Tables

Oracle SQL Connector for Hadoop Distributed File System 2-19

DESCRIBE schema.view;
SELECT * FROM schema.view;

6. Delete the location files, tables, and views that are not needed, using commands
like the following:

EXECUTE utl_file.fremove('directory', 'location_file');

DROP TABLE schema.table;
DROP VIEW schema.view;

Creating External Tables from Delimited Text Files
Oracle SQL Connector for HDFS creates the external table definition for delimited text
files using configuration properties that specify the number of columns, the text
delimiter, and optionally, the external table column names. By default, all text columns
in the external table are VARCHAR2. If column names are not provided, they default to
C1 to Cn, where n is the number of columns specified by the
oracle.hadoop.exttab.columnCount property.

Data Type Mappings
All text data sources are automatically mapped to VARCHAR2(4000). To change the data
type of the target columns created in the Oracle external table, set the
oracle.hadoop.exttab.colMap.* properties listed under "Optional Properties" on
page 2-19.

Required Properties
These properties are required for delimited text sources:

■ oracle.hadoop.exttab.tableName

■ oracle.hadoop.exttab.defaultDirectory

■ oracle.hadoop.exttab.dataPaths

■ oracle.hadoop.exttab.columnCount or oracle.hadoop.exttab.columnNames

■ oracle.hadoop.connection.url

■ oracle.hadoop.connection.user

See "Configuring Oracle SQL Connector for HDFS" on page 2-28 for descriptions of the
properties used for this data source.

Optional Properties
These properties are optional for delimited text sources:

■ oracle.hadoop.exttab.recordDelimiter

■ oracle.hadoop.exttab.fieldTerminator

■ oracle.hadoop.exttab.initialFieldEncloser

■ oracle.hadoop.exttab.trailingFieldEncloser

See Also:

■ Oracle Database Reference

■ Oracle Database PL/SQL Packages and Types Reference

Creating External Tables

2-20 Oracle Big Data Connectors User's Guide

■ oracle.hadoop.exttab.locationFileCount

■ oracle.hadoop.exttab.colMap.columnLength

■ oracle.hadoop.exttab.colMap.column_name.columnLength

■ oracle.hadoop.exttab.colMap.columnType

■ oracle.hadoop.exttab.colMap.column_name.columnType

■ oracle.hadoop.exttab.colMap.dateMask

■ oracle.hadoop.exttab.colMap.column_name.dateMask

■ oracle.hadoop.exttab.colMap.fieldLength

■ oracle.hadoop.exttab.colMap.column_name.fieldLength

■ oracle.hadoop.exttab.colMap.timestampMask

■ oracle.hadoop.exttab.colMap.column_name.timestampMask

■ oracle.hadoop.exttab.colMap.timestampTZMask

■ oracle.hadoop.exttab.colMap.column_name.timestampTZMask

■ oracle.hadoop.exttab.createLogFiles

■ oracle.hadoop.exttab.createBadFiles

Defining Properties in XML Files for Delimited Text Files
Example 2–7 is an XML template containing all the properties that describe a delimited
text file. To use the template, cut and paste it into a text file, enter the appropriate
values to describe your data files, and delete any optional properties that you do not
need. For more information about using XML templates, see "Creating a Configuration
File" on page 2-28.

Example 2–7 XML Template with Properties for a Delimited Text File

<?xml version="1.0"?>

<!-- Required Properties -->

<configuration>
 <property>
 <name>oracle.hadoop.exttab.tableName</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.defaultDirectory</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.dataPaths</name>
 <value>value</value>
 </property>

<!-- Use either columnCount or columnNames -->

 <property>
 <name>oracle.hadoop.exttab.columnCount</name>
 <value>value</value>
 </property>
 <property>

Creating External Tables

Oracle SQL Connector for Hadoop Distributed File System 2-21

 <name>oracle.hadoop.exttab.columnNames</name>
 <value>value</value>
 </property>

 <property>
 <name>oracle.hadoop.connection.url</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.user</name>
 <value>value</value>
 </property>

<!-- Optional Properties -->

 <property>
 <name>oracle.hadoop.exttab.colMap.TYPE</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.recordDelimiter</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.fieldTerminator</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.initialFieldEncloser</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.trailingFieldEncloser</name>
 <value>value</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.locationFileCount</name>
 <value>value</value>
 </property>
</configuration>

Example
Example 2–8 creates an external table named SALES_DT_XTAB from delimited text files.

Example 2–8 Defining an External Table for Delimited Text Files

Log in as the operating system user that Oracle Database runs under (typically the
oracle user), and create a file-system directory:

$ mkdir /data/sales_dt_dir

Create a database directory and grant read and write access to it:

$ sqlplus / as sysdba
SQL> CREATE OR REPLACE DIRECTORY sales_dt_dir AS '/data/sales_dt_dir'
SQL> GRANT READ, WRITE ON DIRECTORY sales_dt_dir TO scott;

Create the external table:

$ export OSCH_HOME="/opt/oracle/orahdfs-3.2.0"
$ export HADOOP_CLASSPATH="$HADOOP_CLASSPATH:$OSCH_HOME/jlib/*"

Publishing the HDFS Data Paths

2-22 Oracle Big Data Connectors User's Guide

$ hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
-D oracle.hadoop.exttab.tableName=SALES_DT_XTAB \
-D oracle.hadoop.exttab.locationFileCount=2 \
-D oracle.hadoop.exttab.dataPaths="hdfs:///user/scott/olh_sales/*.dat" \
-D oracle.hadoop.exttab.columnCount=10 \
-D oracle.hadoop.exttab.defaultDirectory=SALES_DT_DIR \
-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=SCOTT \
-createTable

Creating External Tables in SQL
You can create an external table manually for Oracle SQL Connector for HDFS. For
example, the following procedure enables you to use external table syntax that is not
exposed by the ExternalTable -createTable command.

Additional syntax might not be supported for Data Pump format files.

To create an external table manually:

1. Use the -createTable --noexecute command to generate the external table DDL.

2. Make whatever changes are needed to the DDL.

3. Run the DDL from Step 2 to create the table definition in the Oracle database.

4. Use the ExternalTable -publish command to publish the data URIs to the
location files of the external table.

Publishing the HDFS Data Paths
The -createTable command creates the metadata in Oracle Database for delimited
text and Data Pump sources, and populates the location files with the Universal
Resource Identifiers (URIs) of the data files in HDFS.You might publish the URIs as a
separate step from creating the external table in cases like these:

■ You want to publish new data into an already existing external table.

■ You created the external table manually instead of using the ExternalTable tool.

In both cases, you can use ExternalTable with the -publish command to populate the
external table location files with the URIs of the data files in HDFS. See "Location File
Management" on page 2-27.

ExternalTable Syntax for Publish
hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
[-conf config_file]... \
[-D property=value]... \
-publish [--noexecute]

Note: The publish option is supported for delimited text and Data
Pump sources. It is not supported for Hive sources. Use the -drop and
-createTable commands of the ExternalTable tool for Hive sources.

See Also: "ExternalTable Command-Line Tool Syntax" on page 2-7

Exploring External Tables and Location Files

Oracle SQL Connector for Hadoop Distributed File System 2-23

ExternalTable Example for Publish
Example 2–9 sets HADOOP_CLASSPATH and publishes the HDFS data paths to the
external table created in Example 2–3. See "Configuring Your System for Oracle SQL
Connector for HDFS" on page 2-6 for more information about setting this environment
variable.

Example 2–9 Publishing HDFS Data Paths to an External Table for Data Pump Format
Files

This example uses the Bash shell.

$ export HADOOP_CLASSPATH="OSCH_HOME/jlib/*"
$ hadoop jar OSCH_HOME/jlib/orahdfs.jar oracle.hadoop.exttab.ExternalTable \
-D oracle.hadoop.exttab.tableName=SALES_DP_XTAB \
-D oracle.hadoop.exttab.sourceType=datapump \
-D oracle.hadoop.exttab.dataPaths=hdfs:/user/scott/data/ \
-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=scott -publish

In this example:

■ OSCH_HOME is the full path to the Oracle SQL Connector for HDFS installation
directory.

■ SALES_DP_XTAB is the external table created in Example 2–3.

■ hdfs:/user/scott/data/ is the location of the HDFS data.

■ @myhost:1521 is the database connection string.

Exploring External Tables and Location Files
The -describe command is a debugging and diagnostic utility that prints the
definition of an existing external table. It also enables you to see the location file
metadata and contents. You can use this command to verify the integrity of the
location files of an Oracle external table.

These properties are required to use this command:

■ oracle.hadoop.exttab.tableName

■ The JDBC connection properties; see "Connection Properties" on page 2-37.

ExternalTable Syntax for Describe
hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
[-conf config_file]... \
[-D property=value]... \
-describe

ExternalTable Example for Describe
Example 2–10 shows the command syntax to describe the external tables and location
files associated with SALES_DP_XTAB.

Example 2–10 Exploring External Tables and Location Files

$ export HADOOP_CLASSPATH="OSCH_HOME/jlib/*"

See Also: "ExternalTable Command-Line Tool Syntax" on page 2-7

Dropping Database Objects Created by Oracle SQL Connector for HDFS

2-24 Oracle Big Data Connectors User's Guide

$ hadoop jar OSCH_HOME/jlib/orahdfs.jar oracle.hadoop.exttab.ExternalTable \
-D oracle.hadoop.exttab.tableName=SALES_DP_XTAB \
-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=scott -describe

Dropping Database Objects Created by Oracle SQL Connector for HDFS
The -drop command deletes the database objects created by Oracle SQL Connector for
HDFS. These objects include external tables, location files, and views. If you delete
objects manually, problems can arise as described in "Dropping Dangling Objects" on
page 2-18.

The -drop command only deletes objects created by Oracle SQL Connector for HDFS.
Oracle recommends that you always use the -drop command to drop objects created
by Oracle SQL Connector for HDFS.

These properties are required to use this command:

■ oracle.hadoop.exttab.tableName. For partitioned Hive tables, this is the name of
the metadata table. For other data source types, this is the name of the external
table.

■ The JDBC connection properties; see "Connection Properties" on page 2-37.

ExternalTable Syntax for Drop
hadoop jar OSCH_HOME/jlib/orahdfs.jar \
oracle.hadoop.exttab.ExternalTable \
[-conf config_file]... \
[-D property=value]... \
-drop

ExternalTable Example for Drop
Example 2–10 shows the command syntax to drop the database objects associated with
SALES_DP_XTAB.

Example 2–11 Dropping Database Objects

$ export HADOOP_CLASSPATH="OSCH_HOME/jlib/*"
$ hadoop jar OSCH_HOME/jlib/orahdfs.jar oracle.hadoop.exttab.ExternalTable \
-D oracle.hadoop.exttab.tableName=SALES_DP_XTAB \
-D oracle.hadoop.connection.url=jdbc:oracle:thin:@//myhost:1521/myservicename \
-D oracle.hadoop.connection.user=scott -drop

More About External Tables Generated by the ExternalTable Tool
Because external tables are used to access data, all of the features and limitations of
external tables apply. Queries are executed in parallel with automatic load balancing.
However, update, insert, and delete operations are not allowed and indexes cannot be
created on external tables. When an external table is accessed, a full table scan is
always performed.

Oracle SQL Connector for HDFS uses the ORACLE_LOADER access driver. The hdfs_
stream preprocessor script (provided with Oracle SQL Connector for HDFS) modifies
the input data to a format that ORACLE_LOADER can process.

See Also: "ExternalTable Command-Line Tool Syntax" on page 2-7

More About External Tables Generated by the ExternalTable Tool

Oracle SQL Connector for Hadoop Distributed File System 2-25

About Configurable Column Mappings
Oracle SQL Connector for HDFS uses default data type mappings to create columns in
an Oracle external table with the appropriate data types for the Hive and text sources.
You can override these defaults by setting various configuration properties, for either
all columns or a specific column.

For example, a field in a text file might contain a timestamp. By default, the field is
mapped to a VARCHAR2 column. However, you can specify a TIMESTAMP column and
provide a datetime mask to cast the values correctly into the TIMESTAMP data type. The
TIMESTAMP data type supports time-based queries and analysis that are unavailable
when the data is presented as text.

Default Column Mappings
Text sources are mapped to VARCHAR2 columns, and Hive columns are mapped to
columns with the closest equivalent Oracle data type. Table 2–1 shows the default
mappings.

All Column Overrides
The following properties apply to all columns in the external table. For Hive sources,
these property settings override the oracle.hadoop.exttab.hive.* property settings.

■ oracle.hadoop.exttab.colMap.columnLength

■ oracle.hadoop.exttab.colMap.columnType

■ oracle.hadoop.exttab.colMap.dateMask

■ oracle.hadoop.exttab.colMap.fieldLength

■ oracle.hadoop.exttab.colMap.timestampMask

■ oracle.hadoop.exttab.colMap.timestampTZMask

One Column Overrides
The following properties apply to only one column, whose name is the column_name
part of the property name. These property settings override all other settings.

■ oracle.hadoop.exttab.colMap.column_name.columnLength

■ oracle.hadoop.exttab.colMap.column_name.columnType

■ oracle.hadoop.exttab.colMap.column_name.dateMask

■ oracle.hadoop.exttab.colMap.column_name.fieldLength

■ oracle.hadoop.exttab.colMap.column_name.timestampMask

■ oracle.hadoop.exttab.colMap.column_name.timestampTZMask

See Also:

■ Oracle Database Administrator's Guide for information about
external tables

■ Oracle Database Utilities for more information about external
tables, performance hints, and restrictions when you are using the
ORACLE_LOADER access driver.

More About External Tables Generated by the ExternalTable Tool

2-26 Oracle Big Data Connectors User's Guide

Mapping Override Examples
The following properties create an external table in which all columns are the default
VARCHAR2 data type:

oracle.hadoop.exttab.tableName=MOVIE_FACT_EXT_TAB_TXT
oracle.hadoop.exttab.columnNames=CUST_ID,MOVIE_ID,GENRE_ID,TIME_
ID,RECOMMENDED,ACTIVITY_ID,RATING,SALES

In this example, the following properties are set to override the data type of several
columns:

oracle.hadoop.exttab.colMap.TIME_ID.columnType=TIMESTAMP
oracle.hadoop.exttab.colMap.RECOMMENDED.columnType=NUMBER
oracle.hadoop.exttab.colMap.ACTIVITY_ID.columnType=NUMBER
oracle.hadoop.exttab.colMap.RATING.columnType=NUMBER
oracle.hadoop.exttab.colMap.SALES.columnType=NUMBER

Oracle SQL Connector for HDFS creates an external table with the specified data types:

SQL> DESCRIBE movie_facts_ext
Name Null? Type
--- -------- ----------------------------
CUST_ID VARCHAR2(4000)
MOVIE_ID VARCHAR2(4000)
GENRE_ID VARCHAR2(4000)
TIME_ID TIMESTAMP(9)
RECOMMENDED NUMBER
ACTIVITY_ID NUMBER
RATINGS NUMBER
SALES NUMBER

The next example adds the following property settings to change the length of the
VARCHAR2 columns:

oracle.hadoop.exttab.colMap.CUST_ID.columnLength=12
oracle.hadoop.exttab.colMap.MOVIE_ID.columnLength=12
oracle.hadoop.exttab.colMap.GENRE_ID.columnLength=12

All columns now have custom data types:

SQL> DESCRIBE movie_facts_ext
Name Null? Type
--- -------- ----------------------------
CUST_ID VARCHAR2(12)
MOVIE_ID VARCHAR2(12)
GENRE_ID VARCHAR2(12)
TIME_ID TIMESTAMP(9)
RECOMMENDED NUMBER
ACTIVITY_ID NUMBER
RATINGS NUMBER
SALES NUMBER

What Are Location Files?
A location file is a file specified in the location clause of the external table. Oracle SQL
Connector for HDFS creates location files that contain only the Universal Resource
Identifiers (URIs) of the data files. A data file contains the data stored in HDFS.

More About External Tables Generated by the ExternalTable Tool

Oracle SQL Connector for Hadoop Distributed File System 2-27

Enabling Parallel Processing
To enable parallel processing with external tables, you must specify multiple files in
the location clause of the external table. The number of files determines the number of
child processes started by the external table during a table read, which is known as the
degree of parallelism or DOP.

Setting Up the Degree of Parallelism
Ideally, you can decide to run at a particular degree of parallelism and create a number
of location files that are a multiple of the degree of parallelism, as described in the
following procedure.

To set up parallel processing for maximum performance:

1. Identify the maximum DOP that your Oracle DBA will permit you to use when
running Oracle SQL Connector for HDFS.

When loading a huge amount of data into an Oracle database, you should also
work with the DBA to identify a time when the maximum resources are available.

2. Create a number of location files that is a small multiple of the DOP. For example,
if the DOP is 8, then you might create 8, 16, 24, or 32 location files.

3. Create a number of HDFS files that are about the same size and a multiple of the
number of location files. For example, if you have 32 location files, then you might
create 128, 1280, or more HDFS files, depending on the amount of data and the
minimum HDFS file size.

4. Set the DOP for the data load, using either the ALTER SESSION command or hints
in the SQL SELECT statement.

This example sets the DOP to 8 using ALTER SESSION:

ALTER SESSION FORCE PARALLEL DML PARALLEL 8;
ALTER SESSION FORCE PARALLEL QUERY PARALLEL 8;

The next example sets the DOP to 8 using the PARALLEL hint:

INSERT /*+ parallel(my_db_table,8) */ INTO my_db_table \
 SELECT /*+ parallel(my_hdfs_external_table,8) */ * \
 FROM my_hdfs_external_table;

An APPEND hint in the SQL INSERT statement can also help improve performance.

Location File Management
The Oracle SQL Connector for HDFS command-line tool, ExternalTable, creates an
external table and publishes the HDFS URI information to location files. The external
table location files are stored in the directory specified by the
oracle.hadoop.exttab.defaultDirectory property. For an Oracle RAC database, this
directory must reside on a distributed file system that is accessible to each database
server.

ExternalTable manages the location files of the external table, which involves the
following operations:

■ Generating new location files in the database directory after checking for name
conflicts

■ Deleting existing location files in the database directory as necessary

■ Publishing data URIs to new location files

Configuring Oracle SQL Connector for HDFS

2-28 Oracle Big Data Connectors User's Guide

■ Altering the LOCATION clause of the external table to match the new location files

Location file management for the supported data sources is described in the following
topics.

Data Pump File Format
The ORACLE_LOADER access driver is required to access Data Pump files. The driver
requires that each location file corresponds to a single Data Pump file in HDFS. Empty
location files are not allowed, and so the number of location files in the external table
must exactly match the number of data files in HDFS.

Oracle SQL Connector for HDFS automatically takes over location file management
and ensures that the number of location files in the external table equals the number of
Data Pump files in HDFS.

Delimited Files in HDFS and Hive Tables
The ORACLE_LOADER access driver has no limitation on the number of location files.
Each location file can correspond to one or more data files in HDFS. The number of
location files for the external table is suggested by the
oracle.hadoop.exttab.locationFileCount configuration property.

See "Connection Properties" on page 2-37.

Location File Names
This is the format of a location file name:

osch-timestamp-number-n

In this syntax:

■ timestamp has the format yyyyMMddhhmmss, for example, 20121017103941 for
October 17, 2012, at 10:39:41.

■ number is a random number used to prevent location file name conflicts among
different tables.

■ n is an index used to prevent name conflicts between location files for the same
table.

For example, osch-20121017103941-6807-1.

Configuring Oracle SQL Connector for HDFS
You can pass configuration properties to the ExternalTable tool on the command line
with the -D option, or you can create a configuration file and pass it on the command
line with the -conf option. These options must precede the command to be executed.

For example, this command uses a configuration file named example.xml:

hadoop jar OSCH_HOME/jlib/orahdfs.jar \
 oracle.hadoop.exttab.ExternalTable \
 -conf /home/oracle/example.xml \
 -createTable

See "ExternalTable Command-Line Tool Syntax" on page 2-7.

Creating a Configuration File
A configuration file is an XML document with a very simple structure as follows:

<?xml version="1.0"?>

Configuring Oracle SQL Connector for HDFS

Oracle SQL Connector for Hadoop Distributed File System 2-29

<configuration>
 <property>
 <name>property</name>
 <value>value</value>
 </property>
 .
 .
 .
</configuration>

Example 2–12 shows a configuration file. See "Oracle SQL Connector for HDFS
Configuration Property Reference" on page 2-29 for descriptions of these properties.

Example 2–12 Configuration File for Oracle SQL Connector for HDFS

<?xml version="1.0"?>
<configuration>
 <property>
 <name>oracle.hadoop.exttab.tableName</name>
 <value>SH.SALES_EXT_DIR</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.dataPaths</name>
 <value>/data/s1/*.csv,/data/s2/*.csv</value>
 </property>
 <property>
 <name>oracle.hadoop.exttab.dataCompressionCodec</name>
 <value>org.apache.hadoop.io.compress.DefaultCodec</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.url</name>
 <value>jdbc:oracle:thin:@//myhost:1521/myservicename</value>
 </property>
 <property>
 <name>oracle.hadoop.connection.user</name>
 <value>SH</value>
 </property>
</configuration>

Oracle SQL Connector for HDFS Configuration Property Reference
The following is a complete list of the configuration properties used by the
ExternalTable command-line tool. The properties are organized into these categories:

■ General Properties

■ Connection Properties

General Properties

oracle.hadoop.exttab.colMap.columnLength
Specifies the length of all external table columns of type CHAR, VARCHAR2, NCHAR,
NVARCHAR2, and RAW. Optional.

Default Value: The maximum length allowed by the column type

For Oracle Database 12c, Oracle SQL Connector for HDFS sets the length of VARCHAR2,
NVARCHAR2, and RAW columns depending on whether the database MAX_STRING_SIZE
option is set to STANDARD or EXTENDED.

Valid values: Integer

Configuring Oracle SQL Connector for HDFS

2-30 Oracle Big Data Connectors User's Guide

oracle.hadoop.exttab.colMap.columnType
Specifies the data type mapping of all columns for Hive and text sources. Optional.

You can override this setting for specific columns by setting
oracle.hadoop.exttab.colMap.column_name.columnType.

Default value: VARCHAR2 for text; see Table 2–1 for Hive

Valid values: The following Oracle data types are supported:

VARCHAR2
NVARCHAR2
CHAR
NCHAR
CLOB
NCLOB
NUMBER
INTEGER
FLOAT
BINARY_DOUBLE
BINARY_FLOAT
RAW*
DATE
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL DAY TO SECOND
INTERVAL YEAR TO MONTH
* RAW binary data in delimited text files must be encoded in hexadecimal.

oracle.hadoop.exttab.colMap.dateMask
Specifies the format mask used in the date_format_spec clause of the external table for
all DATE columns. This clause indicates that a character data field contains a date in the
specified format.

Default value: The default globalization format mask, which is set by the NLS_DATE_
FORMAT database parameter

Valid values: A datetime format model as described in Oracle Database SQL Language
Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.colMap.fieldLength
Sets the character buffer length used by the ORACLE_LOADER access driver for all CLOB
columns. The value is used in the field_list clause of the external table definition, which
identifies the fields in the data file and their data types.

Default value: 4000 bytes

Valid values: Integer

oracle.hadoop.exttab.colMap.timestampMask
Specifies the format mask used in the date_format_spec clause of the external table for
all TIMESTAMP and TIMESTAMP WITH LOCAL TIME ZONE columns. This clause indicates
that a character data field contains a timestamp in the specified format.

Default value: The default globalization format mask, which is set by the NLS_
TIMESTAMP_FORMAT database parameter

Valid values: A datetime format model as described in Oracle Database SQL Language
Reference. However, it cannot contain quotation marks.

Configuring Oracle SQL Connector for HDFS

Oracle SQL Connector for Hadoop Distributed File System 2-31

oracle.hadoop.exttab.colMap.timestampTZMask
Specifies the format mask used in the date_format_spec clause of the external table for
all TIMESTAMP WITH TIME ZONE columns. This clause indicates that a character data
field contains a timestamp in the specified format.

Default value: The default globalization format mask, which is set by the NLS_
TIMESTAMP_TZ_FORMAT database parameter

Valid values: A datetime format model as described in the Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.colMap.column_name.columnLength
Specifies the length of all external table columns of type CHAR, VARCHAR2, NCHAR,
NVARCHAR2, and RAW. Optional.

Default Value: The value of oracle.hadoop.exttab.colMap.columnLength; if that
property is not set, then the maximum length allowed by the data type

Valid values: Integer

oracle.hadoop.exttab.colMap.column_name.columnType
Overrides the data type mapping for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in a
Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap.columnType; if that
property is not set, then the default data type identified in Table 2–1

Valid values: See oracle.hadoop.exttab.colMap.columnType

oracle.hadoop.exttab.colMap.column_name.dateMask
Overrides the format mask for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in a
Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap.dateMask.

Valid values: A datetime format model as described in the Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.colMap.column_name.fieldLength
Overrides the character buffer length used by the ORACLE_LOADER access driver for
column_name. This property is especially useful for CLOB and extended data type
columns. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in a
Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: Oracle SQL Connector for HDFS sets the default field lengths as shown
in Table 2–4.

Table 2–4 Field Length Calculations

Data Type of Target Column Field Length

VARCHAR2, NVARCHAR2, CHAR, NCHAR Value of oracle.hadoop.exttab.colMap.column_
name.columnLength

RAW 2 * columnLength property

CLOB, NCLOB Value of oracle.hadoop.exttab.colMap.fieldLength

All other types 255 (default size for external tables)

Configuring Oracle SQL Connector for HDFS

2-32 Oracle Big Data Connectors User's Guide

Valid values: Integer

oracle.hadoop.exttab.colMap.column_name.timestampMask
Overrides the format mask for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in a
Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap.timestampMask.

Valid values: A datetime format model as described in the Oracle Database SQL
Language Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.colMap.column_name.timestampTZMask
Overrides the format mask for column_name. Optional.

The column_name is case-sensitive. It must exactly match the name of a column in a
Hive table or a column listed in oracle.hadoop.exttab.columnNames.

Default value: The value of oracle.hadoop.exttab.colMap.timestampTZMask.

Valid values: A datetime format model as described in Oracle Database SQL Language
Reference. However, it cannot contain quotation marks.

oracle.hadoop.exttab.columnCount
Specifies the number of columns for the external table created from delimited text files.
The column names are set to C1, C2,... Cn, where n is value of this property.

This property is ignored if oracle.hadoop.exttab.columnNames is set.

The -createTable command uses this property when
oracle.hadoop.exttab.sourceType=text.

You must set either this property or oracle.hadoop.exttab.columnNames when
creating an external table from delimited text files.

oracle.hadoop.exttab.columnNames
Specifies a comma-separated list of column names for an external table created from
delimited text files. If this property is not set, then the column names are set to C1,
C2,... Cn, where n is the value of the oracle.hadoop.exttab.columnCount property.

The column names are read as SQL identifiers: unquoted values are capitalized, and
double-quoted values stay exactly as entered.

The -createTable command uses this property when
oracle.hadoop.exttab.sourceType=text.

You must set either this property or oracle.hadoop.exttab.columnCount when
creating an external table from delimited text files.

oracle.hadoop.exttab.dataCompressionCodec
Specifies the name of the compression codec class used to decompress the data files.
Specify this property when the data files are compressed. Optional.

This property specifies the class name of any compression codec that implements the
org.apache.hadoop.io.compress.CompressionCodec interface. This codec applies to
all data files.

Several standard codecs are available in Hadoop, including the following:

■ bzip2: org.apache.hadoop.io.compress.BZip2Codec

■ gzip: org.apache.hadoop.io.compress.GzipCodec

Configuring Oracle SQL Connector for HDFS

Oracle SQL Connector for Hadoop Distributed File System 2-33

To use codecs that may not be available on your Hadoop cluster (such as Snappy), you
must first download, install, and configure them individually on your system.

Default value: None

oracle.hadoop.exttab.dataPaths
Specifies a comma-separated list of fully qualified HDFS paths. This property enables
you to restrict the input by using special pattern-matching characters in the path
specification. See Table 2–5. This property is required for the -createTable and
-publish commands using Data Pump or delimited text files. The property is ignored
for Hive data sources.

For example, to select all files in /data/s2/, and only the CSV files in /data/s7/,
/data/s8/, and /data/s9/, enter this expression:

/data/s2/,/data/s[7-9]/*.csv

The external table accesses the data contained in all listed files and all files in listed
directories. These files compose a single data set.

The data set can contain compressed files or uncompressed files, but not both.

oracle.hadoop.exttab.dataPathFilter
Specifies the path filter class. This property is ignored for Hive data sources.

Oracle SQL Connector for HDFS uses a default filter to exclude hidden files, which
begin with a dot or an underscore. If you specify another path filter class using the this
property, then your filter acts in addition to the default filter. Thus, only visible files
accepted by your filter are considered.

oracle.hadoop.exttab.defaultDirectory
Specifies the default directory for the Oracle external table. This directory is used for
all input and output files that do not explicitly name a directory object.

Valid value: The name of an existing database directory

Table 2–5 Pattern-Matching Characters

Character Description

? Matches any single character

* Matches zero or more characters

[abc] Matches a single character from the character set {a, b, c}

[a-b] Matches a single character from the character range {a...b}. The character
a must be less than or equal to b.

[^a] Matches a single character that is not from character set or range {a}. The
carat (^) must immediately follow the left bracket.

\c Removes any special meaning of character c. The backslash is the escape
character.

{ab\,cd} Matches a string from the string set {ab, cd}. Precede the comma with an
escape character (\) to remove the meaning of the comma as a path
separator.

{ab\,c{de\,fh}} Matches a string from the string set {ab, cde, cfh}. Precede the comma with
an escape character (\) to remove the meaning of the comma as a path
separator.

Configuring Oracle SQL Connector for HDFS

2-34 Oracle Big Data Connectors User's Guide

Unquoted names are changed to upper case. Double-quoted names are not changed;
use them when case-sensitivity is desired. Single-quoted names are not allowed for
default directory names.

The -createTable command requires this property.

oracle.hadoop.exttab.fieldTerminator
Specifies the field terminator for an external table when
oracle.hadoop.exttab.sourceType=text. Optional.

Default value: , (comma)

Valid values: A string in one of the following formats:

■ One or more regular printable characters; it cannot start with \u. For example, \t
represents a tab.

■ One or more encoded characters in the format \uHHHH, where HHHH is a big-endian
hexadecimal representation of the character in UTF-16. For example, \u0009
represents a tab. The hexadecimal digits are case insensitive.

Do not mix the two formats.

oracle.hadoop.exttab.hive.columnType.*
Maps a Hive data type to an Oracle data type. The property name identifies the Hive
data type, and its value is an Oracle data type. The target columns in the external table
are created with the Oracle data type indicated by this property.

When Hive TIMESTAMP column is mapped to an Oracle TIMESTAMP column, then the
format mask is YYYY-MM-DD H24:MI:SS.FF. When a Hive STRING column is mapped to
an Oracle TIMESTAMP column, then the NLS parameter settings for the database are
used by default. You can override these defaults by using either the
oracle.hadoop.exttab.colMap.timestampMask or
oracle.hadoop.exttab.colMap.timestampTZMask properties.

Default values: Table 2–6 lists the Hive column type properties and their default
values.

Valid values: See the valid values for oracle.hadoop.exttab.colMap.columnType.

oracle.hadoop.exttab.hive.databaseName
Specifies the name of a Hive database that contains the input data table.

Table 2–6 Hive Column Type Mapping Properties

Property Default Value

oracle.hadoop.exttab.hive.columnType.BIGINT INTEGER

oracle.hadoop.exttab.hive.columnType.BOOLEAN VARCHAR2

oracle.hadoop.exttab.hive.columnType.DECIMAL NUMBER

oracle.hadoop.exttab.hive.columnType.DOUBLE NUMBER

oracle.hadoop.exttab.hive.columnType.FLOAT NUMBER

oracle.hadoop.exttab.hive.columnType.INT INTEGER

oracle.hadoop.exttab.hive.columnType.SMALLINT INTEGER

oracle.hadoop.exttab.hive.columnType.STRING VARCHAR2

oracle.hadoop.exttab.hive.columnType.TIMESTAMP TIMESTAMP

oracle.hadoop.exttab.hive.columnType.TINYINT INTEGER

Configuring Oracle SQL Connector for HDFS

Oracle SQL Connector for Hadoop Distributed File System 2-35

The -createTable command requires this property when
oracle.hadoop.exttab.sourceType=hive.

oracle.hadoop.exttab.hive.partitionFilter
Specifies a valid HiveQL expression that is used to filter the source Hive table
partitions. This property is ignored if the table is not partitioned. For additional
information, see "oracle.hadoop.loader.input.hive.partitionFilter" on page 3-32. The
two properties are identical.

Default value: None. All partitions of the Hive table are mapped to external tables.

Valid values: A valid HiveQL expression. Hive user-defined functions (UDFs) and
Hive variables are not supported.

oracle.hadoop.exttab.hive.tableName
Specifies the name of an existing Hive table.

The -createTable command requires this property when
oracle.hadoop.exttab.sourceType=hive.

oracle.hadoop.exttab.initialFieldEncloser
Specifies the initial field encloser for an external table created from delimited text files.
Optional.

Default value: null; no enclosers are specified for the external table definition.

The -createTable command uses this property when
oracle.hadoop.exttab.sourceType=text.

Valid values: A string in one of the following formats:

■ One or more regular printable characters; it cannot start with \u.

■ One or more encoded characters in the format \uHHHH, where HHHH is a big-endian
hexadecimal representation of the character in UTF-16. The hexadecimal digits are
case insensitive.

Do not mix the two formats.

oracle.hadoop.exttab.locationFileCount
Specifies the desired number of location files for the external table. Applicable only to
non-Data-Pump files.

Default value: 4

This property is ignored if the data files are in Data Pump format. Otherwise, the
number of location files is the lesser of:

■ The number of data files

■ The value of this property

At least one location file is created.

See "Enabling Parallel Processing" on page 2-27 for more information about the
number of location files.

oracle.hadoop.exttab.logDirectory
Specifies a database directory where log files, bad files, and discard files are stored.
The file names are the default values used by external tables. For example, the name of
a log file is the table name followed by _%p.log.

This is an optional property for the -createTable command.

These are the default file name extensions:

Configuring Oracle SQL Connector for HDFS

2-36 Oracle Big Data Connectors User's Guide

■ Log files: log

■ Bad files: bad

■ Discard files: dsc

Valid values: An existing Oracle directory object name.

Unquoted names are changed to uppercase. Quoted names are not changed. Table 2–7
provides examples of how values are transformed.

oracle.hadoop.exttab.preprocessorDirectory
Specifies the database directory for the preprocessor. The file-system directory must
contain the hdfs_stream script.

Default value: OSCH_BIN_PATH

The preprocessor directory is used in the PREPROCESSOR clause of the external table.

oracle.hadoop.exttab.recordDelimiter
Specifies the record delimiter for an external table created from delimited text files.
Optional.

Default value: \n

The -createTable command uses this property when
oracle.hadoop.exttab.sourceType=text.

Valid values: A string in one of the following formats:

■ One or more regular printable characters; it cannot start with \u.

■ One or more encoded characters in the format \uHHHH, where HHHH is a big-endian
hexadecimal representation of the character in UTF-16. The hexadecimal digits are
case insensitive.

Do not mix the two formats.

oracle.hadoop.exttab.sourceType
Specifies the type of source files. The -createTable and -publish operations require
the value of this property.

Default value: text

Valid values: datapump, hive, or text

oracle.hadoop.exttab.stringSizes
Indicates whether the lengths specified for character strings are bytes or characters.
This value is used in the STRING SIZES ARE IN clause of the external table. Use
characters when loading multibyte character sets. See Oracle Database Utilities.

Default value: BYTES

Valid values: BYTES or CHARACTERS

Table 2–7 Examples of Quoted and Unquoted Values

Specified Value Interpreted Value

my_log_dir:'sales_tab_%p.log ' MY_LOG_DIR/sales_tab_%p.log

'my_log_dir':'sales_tab_%p.log' my_log_dir/sales_tab_%p.log

"my_log_dir":"sales_tab_%p.log" my_log_dir/sales_tab_%p.log

Configuring Oracle SQL Connector for HDFS

Oracle SQL Connector for Hadoop Distributed File System 2-37

oracle.hadoop.exttab.createLogFiles
Specifies whether the log files should be created when the external tables are queried.
Oracle recommends enabling log file creation during development and disabling log
file creation during production for best performance.

Default value: TRUE

Log files are created by default. To stop creating log files you must drop the table, set
this property to FALSE, and then recreate the table. Use the -drop and -createTable
commands to drop and recreate the table.

oracle.hadoop.exttab.createBadFiles
Specifies whether bad files should be created when the external tables are queried. Bad
files contain information on rows with bad data. Bad files are created only when there
is bad data. Oracle recommends creating bad files.

Default value: TRUE

Bad files are created by default. To stop creating bad files you must drop the table, set
this property to FALSE, and then recreate the table. Use the -drop and -createTable
commands to drop and recreate the table.

oracle.hadoop.exttab.tableName
Specifies the metadata table for partitioned Hive tables or schema-qualified name of
the external table for all other data sources, in this format:

schemaName.tableName

If you omit schemaName, then the schema name defaults to the connection user name.

Default value: none

Required property for all operations.

oracle.hadoop.exttab.trailingFieldEncloser
Specifies the trailing field encloser for an external table created from delimited text
files. Optional.

Default value: null; defaults to the value of
oracle.hadoop.exttab.initialFieldEncloser

The -createTable command uses this property when
oracle.hadoop.exttab.sourceType=text.

Valid values: A string in one of the following formats:

■ One or more regular printable characters; it cannot start with \u.

■ One or more encoded characters in the format \uHHHH, where HHHH is a big-endian
hexadecimal representation of the character in UTF-16. The hexadecimal digits are
case insensitive.

Do not mix the two formats.

Connection Properties

oracle.hadoop.connection.url
Specifies the database connection string in the thin-style service name format:

jdbc:oracle:thin:@//host_name:port/service_name

If you are unsure of the service name, then enter this SQL command as a privileged
user:

Configuring Oracle SQL Connector for HDFS

2-38 Oracle Big Data Connectors User's Guide

SQL> show parameter service

If an Oracle wallet is configured as an external password store, then the property value
must start with the driver prefix jdbc:oracle:thin:@ and db_connect_string must
exactly match the credentials defined in the wallet.

This property takes precedence over all other connection properties.

Default value: Not defined

Valid values: A string

oracle.hadoop.connection.user
Specifies an Oracle database log-in name. The externalTable tool prompts for a
password. This property is required unless you are using Oracle wallet as an external
password store.

Default value: Not defined

Valid values: A string

oracle.hadoop.connection.tnsEntryName
Specifies a TNS entry name defined in the tnsnames.ora file.

This property is used with the oracle.hadoop.connection.tns_admin property.

Default value: Not defined

Valid values: A string

oracle.hadoop.connection.tns_admin
Specifies the directory that contains the tnsnames.ora file. Define this property to use
transparent network substrate (TNS) entry names in database connection strings.
When using TNSNames with the JDBC thin driver, you must set either this property or
the Java oracle.net.tns_admin property. When both are set, this property takes
precedence over oracle.net.tns_admin.

This property must be set when using Oracle Wallet as an external password store. See
oracle.hadoop.connection.wallet_location.

Default value: The value of the Java oracle.net.tns_admin system property

Valid values: A string

oracle.hadoop.connection.wallet_location
Specifies a file path to an Oracle wallet directory where the connection credential is
stored.

Default value: Not defined

Valid values: A string

When using Oracle Wallet as an external password store, set these properties:

■ oracle.hadoop.connection.wallet_location

■ oracle.hadoop.connection.url or oracle.hadoop.connection.tnsEntryName

■ oracle.hadoop.connection.tns_admin

Performance Tips for Querying Data in HDFS

Oracle SQL Connector for Hadoop Distributed File System 2-39

Performance Tips for Querying Data in HDFS
Parallel processing is extremely important when you are working with large volumes
of data. When you use external tables, always enable parallel query with this SQL
command:

ALTER SESSION ENABLE PARALLEL QUERY;

Before loading the data into an Oracle database from the external files created by
Oracle SQL Connector for HDFS, enable parallel DDL:

ALTER SESSION ENABLE PARALLEL DDL;

Before inserting data into an existing database table, enable parallel DML with this
SQL command:

ALTER SESSION ENABLE PARALLEL DML;

Hints such as APPEND and PQ_DISTRIBUTE also improve performance when you are
inserting data.

Performance Tips for Querying Data in HDFS

2-40 Oracle Big Data Connectors User's Guide

3

Oracle Loader for Hadoop 3-1

3Oracle Loader for Hadoop

This chapter explains how to use Oracle Loader for Hadoop to copy data from Apache
Hadoop into tables in an Oracle database. It contains the following sections:

■ What Is Oracle Loader for Hadoop?

■ About the Modes of Operation

■ Getting Started With Oracle Loader for Hadoop

■ Creating the Target Table

■ Creating a Job Configuration File

■ About the Target Table Metadata

■ About Input Formats

■ Mapping Input Fields to Target Table Columns

■ About Output Formats

■ Running a Loader Job

■ Handling Rejected Records

■ Balancing Loads When Loading Data into Partitioned Tables

■ Optimizing Communications Between Oracle Engineered Systems

■ Oracle Loader for Hadoop Configuration Property Reference

■ Third-Party Licenses for Bundled Software

What Is Oracle Loader for Hadoop?
Oracle Loader for Hadoop is an efficient and high-performance loader for fast
movement of data from a Hadoop cluster into a table in an Oracle database. It
prepartitions the data if necessary and transforms it into a database-ready format. It
can also sort records by primary key or user-specified columns before loading the data
or creating output files. Oracle Loader for Hadoop uses the parallel processing
framework of Hadoop to perform these preprocessing operations, which other loaders
typically perform on the database server as part of the load process. Offloading these
operations to Hadoop reduces the CPU requirements on the database server, thereby
lessening the performance impact on other database tasks.

Oracle Loader for Hadoop is a Java MapReduce application that balances the data
across reducers to help maximize performance. It works with a range of input data
formats that present the data as records with fields. It can read from sources that have

About the Modes of Operation

3-2 Oracle Big Data Connectors User's Guide

the data already in a record format (such as Avro files or Apache Hive tables), or it can
split the lines of a text file into fields.

You run Oracle Loader for Hadoop using the hadoop command-line utility. In the
command line, you provide configuration settings with the details of the job. You
typically provide these settings in a job configuration file.

If you have Java programming skills, you can extend the types of data that the loader
can handle by defining custom input formats. Then Oracle Loader for Hadoop uses
your code to extract the fields and records.

About the Modes of Operation
Oracle Loader for Hadoop operates in two modes:

■ Online Database Mode

■ Offline Database Mode

Online Database Mode
In online database mode, Oracle Loader for Hadoop can connect to the target database
using the credentials provided in the job configuration file or in an Oracle wallet. The
loader obtains the table metadata from the database. It can insert new records directly
into the target table or write them to a file in the Hadoop cluster. You can load records
from an output file when the data is needed in the database, or when the database
system is less busy.

Figure 3–1 shows the relationships among elements in online database mode.

Figure 3–1 Online Database Mode

Getting Started With Oracle Loader for Hadoop

Oracle Loader for Hadoop 3-3

Offline Database Mode
Offline database mode enables you to use Oracle Loader for Hadoop when the Oracle
Database system is on a separate network from the Hadoop cluster, or is otherwise
inaccessible. In this mode, Oracle Loader for Hadoop uses the information supplied in
a table metadata file, which you generate using a separate utility. The loader job stores
the output data in binary or text format output files on the Hadoop cluster. Loading
the data into Oracle Database is a separate procedure using another utility, such as
Oracle SQL Connector for Hadoop Distributed File System (HDFS) or SQL*Loader.

Figure 3–2 shows the relationships among elements in offline database mode. The
figure does not show the separate procedure of loading the data into the target table.

Figure 3–2 Offline Database Mode

Getting Started With Oracle Loader for Hadoop
You take the following basic steps when using Oracle Loader for Hadoop:

1. The first time you use Oracle Loader for Hadoop, ensure that the software is
installed and configured.

See "Oracle Loader for Hadoop Setup" on page 1-11.

2. Connect to Oracle Database and create the target table.

See "Creating the Target Table" on page 3-5.

Getting Started With Oracle Loader for Hadoop

3-4 Oracle Big Data Connectors User's Guide

3. If you are using offline database mode, then generate the table metadata.

See "Generating the Target Table Metadata for Offline Database Mode" on
page 3-9.

4. Log in to either a node in the Hadoop cluster or a system set up as a Hadoop client
for the cluster.

5. If you are using offline database mode, then copy the table metadata to the
Hadoop system where you are logged in.

6. Create a configuration file. This file is an XML document that describes
configuration information, such as access to the target table metadata, the input
format of the data, and the output format.

See "Creating a Job Configuration File" on page 3-6.

7. Create an XML document that maps input fields to columns in the Oracle database
table. Optional.

See "Mapping Input Fields to Target Table Columns" on page 3-15.

8. Create a shell script to run the Oracle Loader for Hadoop job.

See "Running a Loader Job" on page 3-21.

9. If you are connecting to a secure cluster, then you run kinit to authenticate
yourself.

10. Run the shell script.

11. If the job fails, then use the diagnostic messages in the output to identify and
correct the error.

See "Job Reporting" on page 3-23.

12. After the job succeeds, check the command output for the number of rejected
records. If too many records were rejected, then you may need to modify the input
format properties.

13. If you generated text files or Data Pump-format files, then load the data into
Oracle Database using one of these methods:

■ Create an external table using Oracle SQL Connector for HDFS (online
database mode only).

See Chapter 2.

■ Copy the files to the Oracle Database system and use SQL*Loader or external
tables to load the data into the target database table. Oracle Loader for
Hadoop generates scripts that you can use for these methods.

See "About DelimitedTextOutputFormat" on page 3-19 or "About
DataPumpOutputFormat" on page 3-21.

14. Connect to Oracle Database as the owner of the target table. Query the table to
ensure that the data loaded correctly. If it did not, then modify the input or output
format properties as needed to correct the problem.

15. Before running the OraLoader job in a production environment, employ these
optimizations:

■ Balancing Loads When Loading Data into Partitioned Tables

■ Optimizing Communications Between Oracle Engineered Systems

Creating the Target Table

Oracle Loader for Hadoop 3-5

Creating the Target Table
Oracle Loader for Hadoop loads data into one target table, which must exist in the
Oracle database. The table can be empty or contain data already. Oracle Loader for
Hadoop does not overwrite existing data.

Create the table the same way that you would create one for any other purpose. It
must comply with the following restrictions:

■ Supported Data Types for Target Tables

■ Supported Partitioning Strategies for Target Tables

Supported Data Types for Target Tables
You can define the target table using any of these data types:

■ BINARY_DOUBLE

■ BINARY_FLOAT

■ CHAR

■ DATE

■ FLOAT

■ INTERVAL DAY TO SECOND

■ INTERVAL YEAR TO MONTH

■ NCHAR

■ NUMBER

■ NVARCHAR2

■ RAW

■ TIMESTAMP

■ TIMESTAMP WITH LOCAL TIME ZONE

■ TIMESTAMP WITH TIME ZONE

■ VARCHAR2

The target table can contain columns with unsupported data types, but these columns
must be nullable, or otherwise set to a value.

Supported Partitioning Strategies for Target Tables
Partitioning is a database feature for managing and efficiently querying very large
tables. It provides a way to decompose a large table into smaller and more manageable
pieces called partitions, in a manner entirely transparent to applications.

You can define the target table using any of the following single-level and
composite-level partitioning strategies.

■ Hash

■ Hash-Hash

■ Hash-List

■ Hash-Range

■ Interval

Creating a Job Configuration File

3-6 Oracle Big Data Connectors User's Guide

■ Interval-Hash

■ Interval-List

■ Interval-Range

■ List

■ List-Hash

■ List-List

■ List-Range

■ Range

■ Range-Hash

■ Range-List

■ Range-Range

Oracle Loader for Hadoop does not support reference partitioning or virtual
column-based partitioning.

Compression
Oracle Loader for Hadoop does not compress data. Compressing data during load is
defined by the table and database properties. To load data into a compressed table
define the table and database properties accordingly.

Creating a Job Configuration File
A configuration file is an XML document that provides Hadoop with all the
information it needs to run a MapReduce job. This file can also provide Oracle Loader
for Hadoop with all the information it needs. See "Oracle Loader for Hadoop
Configuration Property Reference" on page 3-26.

Configuration properties provide the following information, which is required for all
Oracle Loader for Hadoop jobs:

■ How to obtain the target table metadata.

See "About the Target Table Metadata" on page 3-8.

■ The format of the input data.

See "About Input Formats" on page 3-11.

■ The format of the output data.

See "About Output Formats" on page 3-18.

OraLoader implements the org.apache.hadoop.util.Tool interface and follows the
standard Hadoop methods for building MapReduce applications. Thus, you can
supply the configuration properties in a file (as shown here) or on the hadoop
command line. See "Running a Loader Job" on page 3-21.

You can use any text or XML editor to create the file. Example 3–1 provides an
example of a job configuration file.

Example 3–1 Job Configuration File

<?xml version="1.0" encoding="UTF-8" ?>

See Also: Oracle Database VLDB and Partitioning Guide

Creating a Job Configuration File

Oracle Loader for Hadoop 3-7

<configuration>

<!-- Input settings -->
 <property>
 <name>mapreduce.inputformat.class</name>
 <value>oracle.hadoop.loader.lib.input.DelimitedTextInputFormat</value>
 </property>

 <property>
 <name>mapred.input.dir</name>
 <value>/user/oracle/moviedemo/session/*00000</value>
 </property>

 <property>
 <name>oracle.hadoop.loader.input.fieldTerminator</name>
 <value>\u0009</value>
 </property>

 <property>
 <name>oracle.hadoop.loader.input.fieldNames</name>
 <value>SESSION_ID,TIME_IDDATE,CUST_ID,DURATION_SESSION,NUM_RATED,DURATION_
RATED,NUM_COMPLETED,DURATION_COMPLETED,TIME_TO_FIRST_START,NUM_STARTED,NUM_
BROWSED,DURATION_BROWSED,NUM_LISTED,DURATION_LISTED,NUM_INCOMPLETE,NUM_
SEARCHED</value>
 </property>

 <property>
 <name>oracle.hadoop.loader.defaultDateFormat</name>
 <value>yyyy-MM-dd:HH:mm:ss</value>
 </property>

<!-- Output settings -->
 <property>
 <name>mapreduce.outputformat.class</name>
 <value>oracle.hadoop.loader.lib.output.OCIOutputFormat</value>
 </property>

 <property>
 <name>mapred.output.dir</name>
 <value>temp_out_session</value>
 </property>

<!-- Table information -->
 <property>
 <name>oracle.hadoop.loader.loaderMap.targetTable</name>
 <value>movie_sessions_tab</value>
 </property>

<!-- Connection information -->

<property>
 <name>oracle.hadoop.loader.connection.url</name>
 <value>jdbc:oracle:thin:@${HOST}:${TCPPORT}/${SERVICE_NAME}</value>
</property>

<property>
 <name>TCPPORT</name>
 <value>1521</value>

About the Target Table Metadata

3-8 Oracle Big Data Connectors User's Guide

</property>

<property>
 <name>HOST</name>
 <value>myoraclehost.example.com</value>
</property>

<property>
 <name>SERVICE_NAME</name>
 <value>orcl</value>
</property>

<property>
 <name>oracle.hadoop.loader.connection.user</name>
 <value>MOVIEDEMO</value>
</property>

<property>
 <name>oracle.hadoop.loader.connection.password</name>
 <value>oracle</value>
 <description> A password in clear text is NOT RECOMMENDED. Use an Oracle wallet
instead.</description>
</property>

</configuration>

About the Target Table Metadata
You must provide Oracle Loader for Hadoop with information about the target table.
The way that you provide this information depends on whether you run Oracle
Loader for Hadoop in online or offline database mode. See "About the Modes of
Operation" on page 3-2.

Providing the Connection Details for Online Database Mode
Oracle Loader for Hadoop uses table metadata from the Oracle database to identify
the column names, data types, partitions, and so forth. The loader automatically
fetches the metadata whenever a JDBC connection can be established.

Oracle recommends that you use a wallet to provide your credentials. To use an Oracle
wallet, enter the following properties in the job configuration file:

■ oracle.hadoop.loader.connection.wallet_location

■ oracle.hadoop.loader.connection.tns_admin

■ oracle.hadoop.loader.connection.url or
oracle.hadoop.loader.connection.tnsEntryName

Oracle recommends that you do not store passwords in clear text; use an Oracle wallet
instead to safeguard your credentials. However, if you are not using an Oracle wallet,
then enter these properties:

■ oracle.hadoop.loader.connection.url

■ oracle.hadoop.loader.connection.user

■ oracle.hadoop.loader.connection.password

About the Target Table Metadata

Oracle Loader for Hadoop 3-9

Generating the Target Table Metadata for Offline Database Mode
Under some circumstances, the loader job cannot access the database, such as when
the Hadoop cluster is on a different network than Oracle Database. In such cases, you
can use the OraLoaderMetadata utility to extract and store the target table metadata in
a file.

To provide target table metadata in offline database mode:

1. Log in to the Oracle Database system.

2. The first time you use offline database mode, ensure that the software is installed
and configured on the database system.

See "Providing Support for Offline Database Mode" on page 1-12.

3. Export the table metadata by running the OraLoaderMetadata utility program. See
"OraLoaderMetadata Utility" on page 3-9.

4. Copy the generated XML file containing the table metadata to the Hadoop cluster.

5. Use the oracle.hadoop.loader.tableMetadataFile property in the job
configuration file to specify the location of the XML metadata file on the Hadoop
cluster.

When the loader job runs, it accesses this XML document to discover the target
table metadata.

OraLoaderMetadata Utility
Use the following syntax to run the OraLoaderMetadata utility on the Oracle Database
system. You must enter the java command on a single line, although it is shown here
on multiple lines for clarity:

java oracle.hadoop.loader.metadata.OraLoaderMetadata
 -user userName
 -connection_url connection
 [-schema schemaName]
 -table tableName
 -output fileName.xml

To see the OraLoaderMetadata Help file, use the command with no options.

Options

-user userName
The Oracle Database user who owns the target table. The utility prompts you for the
password.

-connection_url connection
The database connection string in the thin-style service name format:

jdbc:oracle:thin:@//hostName:port/serviceName

If you are unsure of the service name, then enter this SQL command as a privileged
user:

SQL> show parameter service

NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
service_names string orcl

About the Target Table Metadata

3-10 Oracle Big Data Connectors User's Guide

-schema schemaName
The name of the schema containing the target table. Unquoted values are capitalized,
and unquoted values are used exactly as entered. If you omit this option, then the
utility looks for the target table in the schema specified in the -user option.

-table tableName
The name of the target table. Unquoted values are capitalized, and unquoted values
are used exactly as entered.

-output fileName.xml
The output file name used to store the metadata document.

Example 3–2 shows how to store the target table metadata in an XML file.

Example 3–2 Generating Table Metadata

Run the OraLoaderMetadata utility:

$ java -cp '/tmp/oraloader-3.3.0-h2/jlib/*'
oracle.hadoop.loader.metadata.OraLoaderMetadata -user HR -connection_url
jdbc:oracle:thin://@localhost:1521/orcl.example.com -table EMPLOYEES -output
employee_metadata.xml

The OraLoaderMetadata utility prompts for the database password.

Oracle Loader for Hadoop Release 3.3.0 - Production

Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.

[Enter Database Password:] password

OraLoaderMetadata creates the XML file in the same directory as the script.

$ more employee_metadata.xml
<?xml version="1.0" encoding="UTF-8"?>
<!--
Oracle Loader for Hadoop Release 3.3.0 - Production

Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.

-->
<DATABASE>
<ROWSET><ROW>
<TABLE_T>
 <VERS_MAJOR>2</VERS_MAJOR>
 <VERS_MINOR>5 </VERS_MINOR>
 <OBJ_NUM>78610</OBJ_NUM>
 <SCHEMA_OBJ>
 <OBJ_NUM>78610</OBJ_NUM>
 <DATAOBJ_NUM>78610</DATAOBJ_NUM>
 <OWNER_NUM>87</OWNER_NUM>
 <OWNER_NAME>HR</OWNER_NAME>
 <NAME>EMPLOYEES</NAME>
 .
 .
 .

About Input Formats

Oracle Loader for Hadoop 3-11

About Input Formats
An input format reads a specific type of data stored in Hadoop. Several input formats
are available, which can read the data formats most commonly found in Hadoop:

■ Delimited Text Input Format

■ Complex Text Input Formats

■ Hive Table Input Format

■ Avro Input Format

■ Oracle NoSQL Database Input Format

You can also use your own custom input formats. The descriptions of the built-in
formats provide information that may help you develop custom Java InputFormat
classes. See "Custom Input Formats" on page 3-14.

You specify a particular input format for the data that you want to load into a database
table, by using the mapreduce.inputformat.class configuration property in the job
configuration file.

Delimited Text Input Format
To load data from a delimited text file, set mapreduce.inputformat.class to

oracle.hadoop.loader.lib.input.DelimitedTextInputFormat

About DelimitedTextInputFormat
The input file must comply with these requirements:

■ Records must be separated by newline characters.

■ Fields must be delimited using single-character markers, such as commas or tabs.

A null replaces any empty-string token, whether enclosed or unenclosed.

DelimitedTextInputFormat emulates the tokenization method of SQL*Loader:
Terminated by t, and optionally enclosed by ie, or by ie and te.
DelimitedTextInputFormat uses the following syntax rules, where t is the field
terminator, ie is the initial field encloser, te is the trailing field encloser, and c is one
character.

■ Line = Token t Line | Token\n

■ Token = EnclosedToken | UnenclosedToken

■ EnclosedToken = (white-space)* ie [(non-te)* te te]* (non-te)* te (white-space)*

■ UnenclosedToken = (white-space)* (non-t)*

■ white-space = {c | Character.isWhitespace(c) and c!=t}

White space around enclosed tokens (data values) is discarded. For unenclosed tokens,
the leading white space is discarded, but not the trailing white space (if any).

This implementation enables you to define custom enclosers and terminator
characters, but it hard codes the record terminator as a newline, and white space as
Java Character.isWhitespace. A white space can be defined as the field terminator,

Note: The built-in text formats do not handle header rows or
newline characters (\n) embedded in quoted values.

About Input Formats

3-12 Oracle Big Data Connectors User's Guide

but then that character is removed from the class of white space characters to prevent
ambiguity.

Hadoop automatically decompresses compressed text files when they are read.

Required Configuration Properties
None. The default format separates fields with commas and has no field enclosures.

Optional Configuration Properties
Use one or more of the following properties to define the field delimiters for
DelimitedTextInputFormat:

■ oracle.hadoop.loader.input.fieldTerminator

■ oracle.hadoop.loader.input.initialFieldEncloser

■ oracle.hadoop.loader.input.trailingFieldEncloser

Use the following property to provide names for the input fields:

■ oracle.hadoop.loader.input.fieldNames

Complex Text Input Formats
To load data from text files that are more complex than DelimitedTextInputFormat
can handle, set mapreduce.inputformat.class to

oracle.hadoop.loader.lib.input.RegexInputFormat

For example, a web log might delimit one field with quotes and another field with
square brackets.

About RegexInputFormat
RegexInputFormat requires that records be separated by newline characters. It
identifies fields in each text line by matching a regular expression:

■ The regular expression must match the entire text line.

■ The fields are identified using the capturing groups in the regular expression.

RegexInputFormat uses the java.util.regex regular expression-based pattern
matching engine. Hadoop automatically decompresses compressed files when they are
read.

Required Configuration Properties
Use the following property to describe the data input file:

■ oracle.hadoop.loader.input.regexPattern

Optional Configuration Properties
Use the following property to identify the names of all input fields:

■ oracle.hadoop.loader.input.fieldNames

See Also: Java Platform Standard Edition 6 Java Reference for more
information about java.util.regex at

http://docs.oracle.com/javase/6/docs/api/java/util/regex/pac
kage-summary.html

About Input Formats

Oracle Loader for Hadoop 3-13

Use this property to enable case-insensitive matches:

■ oracle.hadoop.loader.input.regexCaseInsensitive

Hive Table Input Format
To load data from a Hive table, set mapreduce.inputformat.class to

oracle.hadoop.loader.lib.input.HiveToAvroInputFormat

About HiveToAvroInputFormat
For nonpartitioned tables, HiveToAvroInputFormat imports the entire table, which is
all files in the Hive table directory.

For partitioned tables, HiveToAvroInputFormat imports one or more of the partitions.
You can either load or skip a partition. However, you cannot partially load a partition.

Oracle Loader for Hadoop rejects all rows with complex (non-primitive) column
values. UNIONTYPE fields that resolve to primitive values are supported. See "Handling
Rejected Records" on page 3-23.

HiveToAvroInputFormat transforms rows in the Hive table into Avro records, and
capitalizes the Hive table column names to form the field names. This automatic
capitalization improves the likelihood that the field names match the target table
column names. See "Mapping Input Fields to Target Table Columns" on page 3-15.

Required Configuration Properties
You must specify the Hive database and table names using the following configuration
properties:

■ oracle.hadoop.loader.input.hive.databaseName

■ oracle.hadoop.loader.input.hive.tableName

Optional Configuration Properties
To specify a subset of partitions in the input Hive table to load, use the following
property:

■ oracle.hadoop.loader.input.hive.partitionFilter

Avro Input Format
To load data from binary Avro data files containing standard Avro-format records, set
mapreduce.inputformat.class to

oracle.hadoop.loader.lib.input.AvroInputFormat

To process only files with the .avro extension, append *.avro to directories listed in
the mapred.input.dir configuration property.

Configuration Properties
None

Oracle NoSQL Database Input Format
To load data from Oracle NoSQL Database, set mapreduce.inputformat.class to

oracle.kv.hadoop.KVAvroInputFormat

About Input Formats

3-14 Oracle Big Data Connectors User's Guide

This input format is defined in Oracle NoSQL Database 11g, Release 2 and later
releases.

About KVAvroInputFormat
Oracle Loader for Hadoop uses KVAvroInputFormat to read data directly from Oracle
NoSQL Database.

KVAvroInputFormat passes the value but not the key from the key-value pairs in
Oracle NoSQL Database. If you must access the Oracle NoSQL Database keys as Avro
data values, such as storing them in the target table, then you must create a Java
InputFormat class that implements oracle.kv.hadoop.AvroFormatter. Then you can
specify the oracle.kv.formatterClass property in the Oracle Loader for Hadoop
configuration file.

The KVAvroInputFormat class is a subclass of
org.apache.hadoop.mapreduce.InputFormat<oracle.kv.Key,
org.apache.avro.generic.IndexedRecord>

Required Configuration Properties
You must specify the name and location of the key-value store using the following
configuration properties:

■ oracle.kv.hosts

■ oracle.kv.kvstore

See "Oracle NoSQL Database Configuration Properties" on page 3-40.

Custom Input Formats
If the built-in input formats do not meet your needs, then you can write a Java class for
a custom input format. The following information describes the framework in which
an input format works in Oracle Loader for Hadoop.

About Implementing a Custom Input Format
Oracle Loader for Hadoop gets its input from a class extending
org.apache.hadoop.mapreduce.InputFormat. You must specify the name of that class
in the mapreduce.inputformat.class configuration property.

The input format must create RecordReader instances that return an Avro
IndexedRecord input object from the getCurrentValue method. Use this method
signature:

public org.apache.avro.generic.IndexedRecord getCurrentValue()
throws IOException, InterruptedException;

Oracle Loader for Hadoop uses the schema of the IndexedRecord input object to
discover the names of the input fields and map them to the columns of the target table.

About Error Handling
If processing an IndexedRecord value results in an error, Oracle Loader for Hadoop
uses the object returned by the getCurrentKey method of the RecordReader to provide
feedback. It calls the toString method of the key and formats the result in an error

See Also: Javadoc for the KVInputFormatBase class at

http://docs.oracle.com/cd/NOSQL/html/javadoc/index.html

http://docs.oracle.com/cd/NOSQL/html/javadoc/index.html

Mapping Input Fields to Target Table Columns

Oracle Loader for Hadoop 3-15

message. InputFormat developers can assist users in identifying the rejected records
by returning one of the following:

■ Data file URI

■ InputSplit information

■ Data file name and the record offset in that file

Oracle recommends that you do not return the record in clear text, because it might
contain sensitive information; the returned values can appear in Hadoop logs
throughout the cluster. See "Logging Rejected Records in Bad Files" on page 3-23.

If a record fails and the key is null, then the loader generates no identifying
information.

Supporting Data Sampling
Oracle Loader for Hadoop uses a sampler to improve performance of its MapReduce
job. The sampler is multithreaded, and each sampler thread instantiates its own copy
of the supplied InputFormat class. When implementing a new InputFormat, ensure
that it is thread-safe. See "Balancing Loads When Loading Data into Partitioned
Tables" on page 3-24.

InputFormat Source Code Example
Oracle Loader for Hadoop provides the source code for an InputFormat example,
which is located in the examples/jsrc/ directory.

The sample format loads data from a simple, comma-separated value (CSV) file. To
use this input format, specify oracle.hadoop.loader.examples.CSVInputFormat as
the value of mapreduce.inputformat.class in the job configuration file.

This input format automatically assigns field names of F0, F1, F2, and so forth. It does
not have configuration properties.

Mapping Input Fields to Target Table Columns
Mapping identifies which input fields are loaded into which columns of the target
table. You may be able to use the automatic mapping facilities, or you can always
manually map the input fields to the target columns.

Automatic Mapping
Oracle Loader for Hadoop can automatically map the fields to the appropriate
columns when the input data complies with these requirements:

■ All columns of the target table are loaded.

■ The input data field names in the IndexedRecord input object exactly match the
column names.

■ All input fields that are mapped to DATE columns can be parsed using the same
Java date format.

Use these configuration properties for automatic mappings:

■ oracle.hadoop.loader.loaderMap.targetTable: Identifies the target table.

■ oracle.hadoop.loader.defaultDateFormat: Specifies a default date format that
applies to all DATE fields.

Mapping Input Fields to Target Table Columns

3-16 Oracle Big Data Connectors User's Guide

Manual Mapping
For loads that do not comply with the requirements for automatic mapping, you must
define additional properties. These properties enable you to:

■ Load data into a subset of the target table columns.

■ Create explicit mappings when the input field names are not identical to the
database column names.

■ Specify different date formats for different input fields.

Use these properties for manual mappings:

■ oracle.hadoop.loader.loaderMap.targetTable configuration property to
identify the target table. Required.

■ oracle.hadoop.loader.loaderMap.columnNames: Lists the columns to be loaded.

■ oracle.hadoop.loader.defaultDateFormat: Specifies a default date format that
applies to all DATE fields.

■ oracle.hadoop.loader.loaderMap.column_name.format: Specifies the data
format for a particular column.

■ oracle.hadoop.loader.loaderMap.column_name.field: Identifies the name of an
Avro record field mapped to a particular column.

Converting a Loader Map File
The following utility converts a loader map file from earlier releases to a configuration
file:

hadoop oracle.hadoop.loader.metadata.LoaderMap -convert map_file conf_file

Options

map_file
The name of the input loader map file on the local file system (not HDFS).

conf_file
The name of the output configuration file on the local file system (not HDFS).

Example 3–3 shows a sample conversion.

Example 3–3 Converting a Loader File to Configuration Properties

$ HADOOP_CLASSPATH="$HADOOP_CLASSPATH:$OLH_HOME/jlib/*"
$ hadoop oracle.hadoop.loader.metadata.LoaderMap -convert loadermap.xml conf.xml
Oracle Loader for Hadoop Release 3.3.0 - Production

Copyright (c) 2011, 2014, Oracle and/or its affiliates. All rights reserved.

Input Loader Map File loadermap.xml

<?xml version="1.0" encoding="UTF-8"?>
<LOADER_MAP>
 <SCHEMA>HR</SCHEMA>
 <TABLE>EMPLOYEES</TABLE>
 <COLUMN field="F0">EMPLOYEE_ID</COLUMN>
 <COLUMN field="F1">LAST_NAME</COLUMN>
 <COLUMN field="F2">EMAIL</COLUMN>
 <COLUMN field="F3" format="MM-dd-yyyy">HIRE_DATE</COLUMN>
 <COLUMN field="F4">JOB_ID</COLUMN>

Mapping Input Fields to Target Table Columns

Oracle Loader for Hadoop 3-17

</LOADER_MAP>

Output Configuration File conf.xml

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration>
 <property>
 <name>oracle.hadoop.loader.loaderMap.targetTable</name>
 <value>HR.EMPLOYEES</value>
 </property>
 <property>
 <name>oracle.hadoop.loader.loaderMap.columnNames</name>
 <value>EMPLOYEE_ID,LAST_NAME,EMAIL,HIRE_DATE,JOB_ID</value>
 </property>
 <property>
 <name>oracle.hadoop.loader.loaderMap.EMPLOYEE_ID.field</name>
 <value>F0</value>
 </property>
 <property>
 <name>oracle.hadoop.loader.loaderMap.EMPLOYEE_ID.format</name>
 <value></value>
 </property>
 <property>
 <name>oracle.hadoop.loader.loaderMap.LAST_NAME.field</name>
 <value>F1</value>
 </property>
 <property>
 <name>oracle.hadoop.loader.loaderMap.LAST_NAME.format</name>
 <value></value>
 </property>
 <property>
 <name>oracle.hadoop.loader.loaderMap.EMAIL.field</name>
 <value>F2</value>
 </property>
 <property>
 <name>oracle.hadoop.loader.loaderMap.EMAIL.format</name>
 <value></value>
 </property>
 <property>
 <name>oracle.hadoop.loader.loaderMap.HIRE_DATE.field</name>
 <value>F3</value>
 </property>
 <property>
 <name>oracle.hadoop.loader.loaderMap.HIRE_DATE.format</name>
 <value>MM-dd-yyyy</value>
 </property>
 <property>
 <name>oracle.hadoop.loader.loaderMap.JOB_ID.field</name>
 <value>F4</value>
 </property>
 <property>
 <name>oracle.hadoop.loader.loaderMap.JOB_ID.format</name>
 <value></value>
 </property>
</configuration>

About Output Formats

3-18 Oracle Big Data Connectors User's Guide

About Output Formats
In online database mode, you can choose between loading the data directly into an
Oracle database table or storing it in a file. In offline database mode, you are restricted
to storing the output data in a file, which you can load into the target table as a
separate procedure. You specify the output format in the job configuration file using
the mapreduce.outputformat.class property.

Choose from these output formats:

■ JDBC Output Format: Loads the data directly into the target table.

■ Oracle OCI Direct Path Output Format: Loads the data directly into the target
table.

■ Delimited Text Output Format: Stores the data in a local file.

■ Oracle Data Pump Output Format: Stores the data in a local file.

JDBC Output Format
You can use a JDBC connection between the Hadoop system and Oracle Database to
load the data. The output records of the loader job are loaded directly into the target
table by map or reduce tasks as part of the OraLoader process, in online database
mode. No additional steps are required to load the data.

A JDBC connection must be open between the Hadoop cluster and the Oracle
Database system for the duration of the job.

To use this output format, set mapreduce.outputformat.class to

oracle.hadoop.loader.lib.output.JDBCOutputFormat

About JDBCOutputFormat
JDBCOutputFormat uses standard JDBC batching to optimize performance and
efficiency. If an error occurs during batch execution, such as a constraint violation, the
JDBC driver stops execution immediately. Thus, if there are 100 rows in a batch and
the tenth row causes an error, then nine rows are inserted and 91 rows are not.

The JDBC driver does not identify the row that caused the error, and so Oracle Loader
for Hadoop does not know the insert status of any of the rows in the batch. It counts
all rows in a batch with errors as "in question," that is, the rows may or may not be
inserted in the target table. The loader then continues loading the next batch. It
generates a load report at the end of the job that details the number of batch errors and
the number of rows in question.

One way that you can handle this problem is by defining a unique key in the target
table. For example, the HR.EMPLOYEES table has a primary key named EMPLOYEE_ID.
After loading the data into HR.EMPLOYEES, you can query it by EMPLOYEE_ID to discover
the missing employee IDs.Then you can locate the missing employee IDs in the input
data, determine why they failed to load, and try again to load them.

Configuration Properties
To control the batch size, set this property:

 oracle.hadoop.loader.connection.defaultExecuteBatch

About Output Formats

Oracle Loader for Hadoop 3-19

Oracle OCI Direct Path Output Format
You can use the direct path interface of Oracle Call Interface (OCI) to load data into the
target table. Each reducer loads into a distinct database partition in online database
mode, enabling the performance gains of a parallel load. No additional steps are
required to load the data.

The OCI connection must be open between the Hadoop cluster and the Oracle
Database system for the duration of the job.

To use this output format, set mapreduce.outputformat.class to

oracle.hadoop.loader.lib.output.OCIOutputFormat

About OCIOutputFormat
OCIOutputFormat has the following restrictions:

■ It is available only on the Linux x86.64 platform.

■ The MapReduce job must create one or more reducers.

■ The target table must be partitioned.

■ For Oracle Database 11g (11.2.0.3), apply the patch for bug 13498646 if the target
table is a composite interval partitioned table in which the subpartition key
contains a CHAR, VARCHAR2, NCHAR, or NVARCHAR2 column. Later versions of Oracle
Database do not require this patch.

Configuration Properties
To control the size of the direct path stream buffer, set this property:

oracle.hadoop.loader.output.dirpathBufsize

Delimited Text Output Format
You can create delimited text output files on the Hadoop cluster. The map or reduce
tasks generate delimited text files, using the field delimiters and enclosers that you
specify in the job configuration properties. Afterward, you can load the data into an
Oracle database as a separate procedure. See "About DelimitedTextOutputFormat" on
page 3-19.

This output format can use either an open connection to the Oracle Database system to
retrieve the table metadata in online database mode, or a table metadata file generated
by the OraloaderMetadata utility in offline database mode.

To use this output format, set mapreduce.outputformat.class to

oracle.hadoop.loader.lib.output.DelimitedTextOutputFormat

About DelimitedTextOutputFormat
Output tasks generate delimited text format files, and one or more corresponding
SQL*Loader control files, and SQL scripts for loading with external tables.

If the target table is not partitioned or if oracle.hadoop.loader.loadByPartition is
false, then DelimitedTextOutputFormat generates the following files:

■ A data file named oraloader-taskId-csv-0.dat.

■ A SQL*Loader control file named oraloader-csv.ctl for the entire job.

■ A SQL script named oraloader-csv.sql to load the delimited text file into the
target table.

About Output Formats

3-20 Oracle Big Data Connectors User's Guide

For partitioned tables, multiple output files are created with the following names:

■ Data files: oraloader-taskId-csv-partitionId.dat

■ SQL*Loader control files: oraloader-taskId-csv-partitionId.ctl

■ SQL script: oraloader-csv.sql

In the generated file names, taskId is the mapper or reducer identifier, and partitionId is
the partition identifier.

If the Hadoop cluster is connected to the Oracle Database system, then you can use
Oracle SQL Connector for HDFS to load the delimited text data into an Oracle
database. See Chapter 2.

Alternatively, you can copy the delimited text files to the database system and load the
data into the target table in one of the following ways:

■ Use the generated control files to run SQL*Loader and load the data from the
delimited text files.

■ Use the generated SQL scripts to perform external table loads.

The files are located in the ${mapred.output.dir}/_olh directory.

Configuration Properties
The following properties control the formatting of records and fields in the output
files:

■ oracle.hadoop.loader.output.escapeEnclosers

■ oracle.hadoop.loader.output.fieldTerminator

■ oracle.hadoop.loader.output.initialFieldEncloser

■ oracle.hadoop.loader.output.trailingFieldEncloser

Example 3–4 shows a sample SQL*Loader control file that might be generated by an
output task.

Example 3–4 Sample SQL*Loader Control File

LOAD DATA CHARACTERSET AL32UTF8
INFILE 'oraloader-csv-1-0.dat'
BADFILE 'oraloader-csv-1-0.bad'
DISCARDFILE 'oraloader-csv-1-0.dsc'
INTO TABLE "SCOTT"."CSV_PART" PARTITION(10) APPEND
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
(
 "ID" DECIMAL EXTERNAL,
 "NAME" CHAR,
 "DOB" DATE 'SYYYY-MM-DD HH24:MI:SS'
)

Oracle Data Pump Output Format
You can create Data Pump format files on the Hadoop cluster. The map or reduce tasks
generate Data Pump files. Afterward, you can load the data into an Oracle database as
a separate procedure. See "About DataPumpOutputFormat" on page 3-21.

This output format can use either an open connection to the Oracle Database system in
online database mode, or a table metadata file generated by the OraloaderMetadata
utility in offline database mode.

Running a Loader Job

Oracle Loader for Hadoop 3-21

To use this output format, set mapreduce.outputformat.class to

oracle.hadoop.loader.lib.output.DataPumpOutputFormat

About DataPumpOutputFormat
DataPumpOutputFormat generates data files with names in this format:

oraloader-taskId-dp-partitionId.dat

In the generated file names, taskId is the mapper or reducer identifier, and partitionId is
the partition identifier.

If the Hadoop cluster is connected to the Oracle Database system, then you can use
Oracle SQL Connector for HDFS to load the Data Pump files into an Oracle database.
See Chapter 2.

Alternatively, you can copy the Data Pump files to the database system and load them
using a SQL script generated by Oracle Loader for Hadoop. The script performs the
following tasks:

1. Creates an external table definition using the ORACLE_DATAPUMP access driver. The
binary format Oracle Data Pump output files are listed in the LOCATION clause of
the external table.

2. Creates a directory object that is used by the external table. You must uncomment
this command before running the script. To specify the directory name used in the
script, set the oracle.hadoop.loader.extTabDirectoryName property in the job
configuration file.

3. Insert the rows from the external table into the target table. You must uncomment
this command before running the script.

The SQL script is located in the ${mapred.output.dir}/_olh directory.

Running a Loader Job
To run a job using Oracle Loader for Hadoop, you use the OraLoader utility in a
hadoop command.

The following is the basic syntax:

hadoop jar $OLH_HOME/jlib/oraloader.jar oracle.hadoop.loader.OraLoader \
-conf job_config.xml \
-libjars input_file_format1.jar[,input_file_format2.jar...]

You can include any generic hadoop command-line option. OraLoader implements the
org.apache.hadoop.util.Tool interface and follows the standard Hadoop methods
for building MapReduce applications.

See Also:

■ Oracle Database Administrator's Guide for more information about
creating and managing external tables

■ Oracle Database Utilities for more information about the ORACLE_
DATAPUMP access driver

Running a Loader Job

3-22 Oracle Big Data Connectors User's Guide

Basic Options

-conf job_config.xml
Identifies the job configuration file. See "Creating a Job Configuration File" on
page 3-6.

-libjars
Identifies the JAR files for the input format.

■ When using the example input format, specify $OLH_
HOME/jlib/oraloader-examples.jar.

■ When using the Hive or Oracle NoSQL Database input formats, you must specify
additional JAR files, as described later in this section.

■ When using a custom input format, specify its JAR file. (Also remember to add it
to HADOOP_CLASSPATH.)

Separate multiple file names with commas, and list each one explicitly. Wildcard
characters and spaces are not allowed.

Oracle Loader for Hadoop prepares internal configuration information for the
MapReduce tasks. It stores table metadata information and the dependent Java
libraries in the distributed cache, so that they are available to the MapReduce tasks
throughout the cluster.

Example of Running OraLoader
The following example uses a built-in input format and a job configuration file named
MyConf.xml:

HADOOP_CLASSPATH="$HADOOP_CLASSPATH:$OLH_HOME/jlib/*"

hadoop jar $OLH_HOME/jlib/oraloader.jar oracle.hadoop.loader.OraLoader \
-conf MyConf.xml -libjars $OLH_HOME/jlib/oraloader-examples.jar

Specifying Hive Input Format JAR Files
When using HiveToAvroInputFormat, you must add the Hive configuration directory
to the HADOOP_CLASSPATH environment variable:

HADOOP_CLASSPATH="$HADOOP_CLASSPATH:$OLH_HOME/jlib/*:hive_home/lib/*:hive_conf_
dir"

You must also add the following Hive JAR files, in a comma-separated list, to the
-libjars option of the hadoop command. Replace the stars (*) with the complete file
names on your system:

■ hive-exec-*.jar

■ hive-metastore-*.jar

■ libfb303*.jar

This example shows the full file names in Cloudera's Distribution including Apache
Hadoop (CDH) 4.4:

See Also:

■ For the full hadoop command syntax and generic options, go to

http://hadoop.apache.org/docs/current/hadoop-project-dist
/hadoop-common/CommandsManual.html

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html

Handling Rejected Records

Oracle Loader for Hadoop 3-23

hadoop jar $OLH_HOME/jlib/oraloader.jar oracle.hadoop.loader.OraLoader \
-conf MyConf.xml \
-libjars
hive-exec-0.10.0-cdh4.4.0.jar,hive-metastore-0.10.0-cdh4.4.0.jar,libfb303-0.9.0.ja
r

Specifying Oracle NoSQL Database Input Format JAR Files
When using KVAvroInputFormat from Oracle NoSQL Database 11g, Release 2, you
must include $KVHOME/lib/kvstore.jar in your HADOOP_CLASSPATH and you must
include the -libjars option in the hadoop command:

hadoop jar $OLH_HOME/jlib/oraloader.jar oracle.hadoop.loader.OraLoader \
-conf MyConf.xml \
-libjars $KVHOME/lib/kvstore.jar

Job Reporting
Oracle Loader for Hadoop consolidates reporting information from individual tasks
into a file named ${mapred.output.dir}/_olh/oraloader-report.txt. Among other
statistics, the report shows the number of errors, broken out by type and task, for each
mapper and reducer.

Handling Rejected Records
Oracle Loader for Hadoop may reject input records for a variety of reasons, such as:

■ Errors in the mapping properties

■ Missing fields in the input data

■ Records mapped to invalid table partitions

■ Badly formed records, such as dates that do not match the date format or records
that do not match regular expression patterns

Logging Rejected Records in Bad Files
By default, Oracle Loader for Hadoop does not log the rejected records into Hadoop
logs; it only logs information on how to identify the rejected records. This practice
prevents user-sensitive information from being stored in Hadoop logs across the
cluster.

You can direct Oracle Loader for Hadoop to log rejected records by setting the
oracle.hadoop.loader.logBadRecords configuration property to true. Then Oracle
Loader for Hadoop logs bad records into one or more "bad" files in the _olh/ directory
under the job output directory.

Setting a Job Reject Limit
Some problems can cause Oracle Loader for Hadoop to reject every record in the
input. To mitigate the loss of time and resources, Oracle Loader for Hadoop aborts the
job after rejecting 1000 records.

You can change the maximum number of rejected records allowed by setting the
oracle.hadoop.loader.rejectLimit configuration property. A negative value turns
off the reject limit and allows the job to run to completion regardless of the number of
rejected records.

Balancing Loads When Loading Data into Partitioned Tables

3-24 Oracle Big Data Connectors User's Guide

Balancing Loads When Loading Data into Partitioned Tables
The goal of load balancing is to generate a MapReduce partitioning scheme that
assigns approximately the same amount of work to all reducers.

The sampling feature of Oracle Loader for Hadoop balances loads across reducers
when data is loaded into a partitioned database table. It generates an efficient
MapReduce partitioning scheme that assigns database partitions to the reducers.

The execution time of a reducer is usually proportional to the number of records that it
processes—the more records, the longer the execution time. When sampling is
disabled, all records from a given database partition are sent to one reducer. This can
result in unbalanced reducer loads, because some database partitions may have more
records than others. Because the execution time of a Hadoop job is usually dominated
by the execution time of its slowest reducer, unbalanced reducer loads slow down the
entire job.

Using the Sampling Feature
You can turn the sampling feature on or off by setting the
oracle.hadoop.loader.sampler.enableSampling configuration property. Sampling is
turned on by default.

Tuning Load Balancing
These job configuration properties control the quality of load balancing:

■ oracle.hadoop.loader.sampler.maxLoadFactor

■ oracle.hadoop.loader.sampler.loadCI

The sampler uses the expected reducer load factor to evaluate the quality of its
partitioning scheme. The load factor is the relative overload for each reducer,
calculated as (assigned_load - ideal_load)/ideal_load. This metric indicates how much a
reducer's load deviates from a perfectly balanced reducer load. A load factor of 1.0
indicates a perfectly balanced load (no overload).

Small load factors indicate better load balancing. The maxLoadFactor default of 0.05
means that no reducer is ever overloaded by more than 5%. The sampler guarantees
this maxLoadFactor with a statistical confidence level determined by the value of
loadCI. The default value of loadCI is 0.95, which means that any reducer's load factor
exceeds maxLoadFactor in only 5% of the cases.

There is a trade-off between the execution time of the sampler and the quality of load
balancing. Lower values of maxLoadFactor and higher values of loadCI achieve more
balanced reducer loads at the expense of longer sampling times. The default values of
maxLoadFactor=0.05 and loadCI=0.95 are a good trade-off between load balancing
quality and execution time.

Tuning Sampling Behavior
By default, the sampler runs until it collects just enough samples to generate a
partitioning scheme that satisfies the maxLoadFactor and loadCI criteria.

However, you can limit the sampler running time by setting the
oracle.hadoop.loader.sampler.maxSamplesPct property, which specifies the
maximum number of sampled records.

Optimizing Communications Between Oracle Engineered Systems

Oracle Loader for Hadoop 3-25

When Does Oracle Loader for Hadoop Use the Sampler's Partitioning Scheme?
Oracle Loader for Hadoop uses the generated partitioning scheme only if sampling is
successful. A sampling is successful if it generates a partitioning scheme with a
maximum reducer load factor of (1+ maxLoadFactor) guaranteed at a statistical
confidence level of loadCI.

The default values of maxLoadFactor, loadCI, and maxSamplesPct allow the sampler to
successfully generate high-quality partitioning schemes for a variety of different input
data distributions. However, the sampler might be unsuccessful in generating a
partitioning scheme using custom property values, such as when the constraints are
too rigid or the number of required samples exceeds the user-specified maximum of
maxSamplesPct. In these cases, Oracle Loader for Hadoop generates a log message
identifying the problem, partitions the records using the database partitioning scheme,
and does not guarantee load balancing.

Alternatively, you can reset the configuration properties to less rigid values. Either
increase maxSamplesPct, or decrease maxLoadFactor or loadCI, or both.

Resolving Memory Issues
A custom input format may return input splits that do not fit in memory. If this
happens, the sampler returns an out-of-memory error on the client node where the
loader job is submitted.

To resolve this problem:

■ Increase the heap size of the JVM where the job is submitted.

■ Adjust the following properties:

– oracle.hadoop.loader.sampler.hintMaxSplitSize

– oracle.hadoop.loader.sampler.hintNumMapTasks

If you are developing a custom input format, then see "Custom Input Formats" on
page 3-14.

What Happens When a Sampling Feature Property Has an Invalid Value?
If any configuration properties of the sampling feature are set to values outside the
accepted range, an exception is not returned. Instead, the sampler prints a warning
message, resets the property to its default value, and continues executing.

Optimizing Communications Between Oracle Engineered Systems
If you are using Oracle Loader for Hadoop to load data from Oracle Big Data
Appliance to Oracle Exadata Database Machine, then you can increase throughput by
configuring the systems to use Sockets Direct Protocol (SDP) over the InfiniBand
private network. This setup provides an additional connection attribute whose sole
purpose is serving connections to Oracle Database to load data.

To specify SDP protocol:

1. Add JVM options to the HADOOP_OPTS environment variable to enable JDBC SDP
export:

HADOOP_OPTS="-Doracle.net.SDP=true -Djava.net.preferIPv4Stack=true"

2. Set this Hadoop configuration property for the child task JVMs:

-D mapred.child.java.opts="-Doracle.net.SDP=true

Oracle Loader for Hadoop Configuration Property Reference

3-26 Oracle Big Data Connectors User's Guide

-Djava.net.preferIPv4Stack=true"

3. Configure standard Ethernet communications. In the job configuration file, set
oracle.hadoop.loader.connection.url using this syntax:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=hostName)(PORT=portNumber)))
 (CONNECT_DATA=(SERVICE_NAME=serviceName)))

4. Configure the Oracle listener on Exadata to support the SDP protocol and bind it
to a specific port address (such as 1522). In the job configuration file, specify the
listener address as the value of oracle.hadoop.loader.connection.oci_url
using this syntax:

(DESCRIPTION=(ADDRESS=(PROTOCOL=SDP)
 (HOST=hostName) (PORT=portNumber))
 (CONNECT_DATA=(SERVICE_NAME=serviceName)))

Replace hostName, portNumber, and serviceName with the appropriate values to
identify the SDP listener on your Oracle Exadata Database Machine.

Oracle Loader for Hadoop Configuration Property Reference
OraLoader uses the standard methods of specifying configuration properties in the
hadoop command. You can use the -conf option to identify configuration files, and
the -D option to specify individual properties. See "Running a Loader Job" on
page 3-21.

This section describes the OraLoader configuration properties, the Oracle NoSQL
Database configuration properties, and a few generic Hadoop MapReduce properties
that you typically must set for an OraLoader job:

■ MapReduce Configuration Properties

■ OraLoader Configuration Properties

■ Oracle NoSQL Database Configuration Properties

A configuration file showing all OraLoader properties is in $OLH_
HOME/doc/oraloader-conf.xml.

MapReduce Configuration Properties

mapred.job.name
Type: String

Default Value: OraLoader

Note: This Hadoop configuration property can be either added to
the OLH command line or set in the configuration file.

See Also: Oracle Big Data Appliance Software User's Guide for more
information about configuring communications over InfiniBand

See Also: Hadoop documentation for job configuration files at

http://wiki.apache.org/hadoop/JobConfFile

Oracle Loader for Hadoop Configuration Property Reference

Oracle Loader for Hadoop 3-27

Description: The Hadoop job name. A unique name can help you monitor the job
using tools such as the Hadoop JobTracker web interface and Cloudera Manager.

mapred.input.dir
Type: String

Default Value: Not defined

Description: A comma-separated list of input directories.

mapreduce.inputformat.class
Type: String

Default Value: Not defined

Description: Identifies the format of the input data. You can enter one of the following
built-in input formats, or the name of a custom InputFormat class:

■ oracle.hadoop.loader.lib.input.AvroInputFormat

■ oracle.hadoop.loader.lib.input.DelimitedTextInputFormat

■ oracle.hadoop.loader.lib.input.HiveToAvroInputFormat

■ oracle.hadoop.loader.lib.input.RegexInputFormat

■ oracle.kv.hadoop.KVAvroInputFormat

See "About Input Formats" on page 3-11 for descriptions of the built-in input formats.

mapred.output.dir
Type: String

Default Value: Not defined

Description: A comma-separated list of output directories, which cannot exist before
the job runs. Required.

mapreduce.outputformat.class
Type: String

Default Value: Not defined

Description: Identifies the output type. The values can be:

■ oracle.hadoop.loader.lib.output.DataPumpOutputFormat

Writes data records into binary format files that can be loaded into the target table
using an external table.

■ oracle.hadoop.loader.lib.output.DelimitedTextOutputFormat

Writes data records to delimited text format files such as comma-separated values
(CSV) format files.

■ oracle.hadoop.loader.lib.output.JDBCOutputFormat

Inserts rows into the target table using a JDBC connection.

■ oracle.hadoop.loader.lib.output.OCIOutputFormat

Inserts rows into the target table using the Oracle OCI Direct Path interface.

See "About Output Formats" on page 3-18.

mapred.reduce.tasks
Type: Integer

Oracle Loader for Hadoop Configuration Property Reference

3-28 Oracle Big Data Connectors User's Guide

Default Value: 1

Description: The number of reduce tasks used by the Oracle Loader for Hadoop job.
The default value of 1 does not support parallel processing, therefore performance
improves when the value is increased to support multiple parallel data loads. Choose
a value that provides an ample, but not excessive, number of reduce tasks for the job.
At a point dictated by the available resources, an excessive increase in the number of
reduce tasks result in diminishing improvements, while potentially degrading the
performance of other jobs.

OraLoader Configuration Properties

oracle.hadoop.loader.badRecordFlushInterval
Type: Integer

Default Value: 500

Description: Sets the maximum number of records that a task attempt can log before
flushing the log file. This setting limits the number of records that can be lost when the
record reject limit (oracle.hadoop.loader.rejectLimit) is reached and the job stops
running.

The oracle.hadoop.loader.logBadRecords property must be set to true for a flush
interval to take effect.

oracle.hadoop.loader.compressionFactors
Type: Decimal

Default Value: BASIC=5.0,OLTP=5.0,QUERY_LOW=10.0,QUERY_HIGH=10.0,ARCHIVE_
LOW=10.0,ARCHIVE_HIGH=10.0

Description: These values are used by Oracle Loader for Hadoop when sampling is
enabled and the target table is compressed. They are the compression factors of the
target table. For best performance, the values of this property should match the
compression factors of the target table. The values are a comma-delimited list of
name=value pairs. The names must be one of the following keywords:

ARCHIVE_HIGH
ARCHIVE_LOW
BASIC
OLTP
QUERY_HIGH
QUERY_LOW

oracle.hadoop.loader.connection.defaultExecuteBatch
Type: Integer

Default Value: 100

Description: The number of records inserted in one trip to the database. It applies only
to JDBCOutputFormat and OCIOutputFormat.

Note: mapred.reduce.tasks is the property for MapReduce 1.0.
mapreduce.job.reduces is the newer property in MapReduce 2.0.
mapred.reduce.tasks works in MapReduce 2.0, but has been
deprecated.

Oracle Loader for Hadoop Configuration Property Reference

Oracle Loader for Hadoop 3-29

Specify a value greater than or equal to 1. Although the maximum value is unlimited,
very large batch sizes are not recommended because they result in a large memory
footprint without much increase in performance.

A value less than 1 sets the property to the default value.

oracle.hadoop.loader.connection.oci_url
Type: String

Default Value: Value of oracle.hadoop.loader.connection.url

Description: The database connection string used by OCIOutputFormat. This property
enables the OCI client to connect to the database using different connection parameters
than the JDBC connection URL.

The following example specifies Socket Direct Protocol (SDP) for OCI connections.

(DESCRIPTION=(ADDRESS_LIST=
(ADDRESS=(PROTOCOL=SDP)(HOST=myhost)(PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=my_db_service_name)))

This connection string does not require a "jdbc:oracle:thin:@" prefix. All characters up
to and including the first at-sign (@) are removed.

oracle.hadoop.loader.connection.password
Type: String

Default Value: Not defined

Description: Password for the connecting user. Oracle recommends that you do not
store your password in clear text. Use an Oracle wallet instead.

oracle.hadoop.loader.connection.sessionTimeZone
Type: String

Default Value: LOCAL

Description: Alters the session time zone for database connections. Valid values are:

■ [+|-]hh:mm: Hours and minutes before or after Coordinated Universal Time
(UTC), such as -5:00 for Eastern Standard Time

■ LOCAL: The default time zone of the JVM

■ time_zone_region: A valid JVM time zone region, such as EST (for Eastern Standard
Time) or America/New_York

This property also determines the default time zone for input data that is loaded into
TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL TIME ZONE database column
types.

oracle.hadoop.loader.connection.tns_admin
Type: String

Default Value: Not defined

Description: File path to a directory on each node of the Hadoop cluster, which
contains SQL*Net configuration files such as sqlnet.ora and tnsnames.ora. Set this
property so that you can use TNS entry names in database connection strings.

You must set this property when using an Oracle wallet as an external password store
(as Oracle recommends). See oracle.hadoop.loader.connection.wallet_location.

Oracle Loader for Hadoop Configuration Property Reference

3-30 Oracle Big Data Connectors User's Guide

oracle.hadoop.loader.connection.tnsEntryName
Type: String

Default Value: Not defined

Description: A TNS entry name defined in the tnsnames.ora file. Use this property
with oracle.hadoop.loader.connection.tns_admin.

oracle.hadoop.loader.connection.url
Type: String

Default Value: Not defined

Description: The URL of the database connection. This property overrides all other
connection properties.

If an Oracle wallet is configured as an external password store (as Oracle
recommends), then the property value must start with the jdbc:oracle:thin:@ driver
prefix, and the database connection string must exactly match the credential in the
wallet. See oracle.hadoop.loader.connection.wallet_location.

The following examples show valid values of connection URLs:

■ Oracle Net Format:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=myhost)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=example_service_name)))

■ TNS Entry Format:

jdbc:oracle:thin:@myTNSEntryName

■ Thin Style:

jdbc:oracle:thin:@//myhost:1521/my_db_service_name

oracle.hadoop.loader.connection.user
Type: String

Default Value: Not defined

Description: A database user name. This property requires that you also set
oracle.hadoop.loader.connection.password. However, Oracle recommends that
you use an Oracle wallet to store your password. Do not store it in clear text.

When using online database mode, you must set either this property or
oracle.hadoop.loader.connection.wallet_location.

oracle.hadoop.loader.connection.wallet_location
Type: String

Default Value: Not defined

Description: File path to an Oracle wallet directory on each node of the Hadoop
cluster, where the connection credentials are stored.

When using an Oracle wallet, you must also set the following properties:

■ oracle.hadoop.loader.connection.tns_admin

■ oracle.hadoop.loader.connection.url or
oracle.hadoop.loader.connection.tnsEntryName

Oracle Loader for Hadoop Configuration Property Reference

Oracle Loader for Hadoop 3-31

oracle.hadoop.loader.defaultDateFormat
Type: String

Default Value: yyyy-MM-dd HH:mm:ss

Description: Parses an input field into a DATE column using a
java.text.SimpleDateformat pattern and the default locale. If the input file requires
different patterns for different fields, then use the manual mapping properties. See
"Manual Mapping" on page 3-16.

oracle.hadoop.loader.enableSorting
Type: Boolean

Default Value: true

Description: Controls whether output records within each reducer group are sorted.
Use the oracle.hadoop.loader.sortKey property to identify the columns of the target
table to sort by. Otherwise, Oracle Loader for Hadoop sorts the records by the primary
key.

oracle.hadoop.loader.extTabDirectoryName
Type: String

Default Value: OLH_EXTTAB_DIR

Description: The name of the database directory object for the external table LOCATION
data files. Oracle Loader for Hadoop does not copy data files into this directory; the
file output formats generate a SQL file containing external table DDL, where the
directory name appears.

This property applies only to DelimitedTextOutputFormat and
DataPumpOutputFormat.

oracle.hadoop.loader.input.fieldNames
Type: String

Default Value: F0,F1,F2,...

Description: A comma-delimited list of names for the input fields.

For the built-in input formats, specify names for all fields in the data, not just the fields
of interest. If an input line has more fields than this property has field names, then the
extra fields are discarded. If a line has fewer fields than this property has field names,
then the extra fields are set to null. See "Mapping Input Fields to Target Table
Columns" on page 3-15 for loading only selected fields.

The names are used to create the Avro schema for the record, so they must be valid
JSON name strings.

oracle.hadoop.loader.input.fieldTerminator
Type: String

Default Value: , (comma)

Description: A character that indicates the end of an input field for
DelimitedTextInputFormat. The value can be either a single character or \uHHHH,
where HHHH is the character's UTF-16 encoding.

oracle.hadoop.loader.input.hive.databaseName
Type: String

Default Value: Not defined

Description: The name of the Hive database where the input table is stored

Oracle Loader for Hadoop Configuration Property Reference

3-32 Oracle Big Data Connectors User's Guide

oracle.hadoop.loader.input.hive.partitionFilter
Type: String

Default Value: Not defined

Description: A valid HiveQL expression that is used to filter the source Hive table
partitions for HiveToAvroInputFormat. The expression must contain only partition
columns. Including other columns does not raise an error, but unintended
consequences can result. Oracle recommends that you not include other columns. If
the value is not set, then Oracle Loader for Hadoop loads the data from all partitions
of the source Hive table. This property is ignored if the table is not partitioned.

The expression must conform to the following restrictions:

■ Selects partitions and not individual records inside the partitions.

■ Does not include columns that are not used to partition the table, because they
might cause unintended consequences.

■ Does not include subqueries.

■ Does not include user-defined functions (UDFs), which are not supported; built-in
functions are supported.

■ Resolves all variable expansions at the Hadoop level. Hive variable name spaces
(such as env:, system:, hiveconf:, and hivevar:) have no meaning. Oracle
Loader for Hadoop sets hive.variable.substitute to false, which disables Hive
variable expansion. You can choose between these expansion methods:

Expand all variables before setting this property: In the Hive CLI, use the
following commands:

CREATE VIEW view_name AS SELECT * from database.table_name WHERE expression;
DESCRIBE FORMATTED view_name;

The View Original Text field contains the query with all variables expanded. Copy
the where clause, starting after where.

Define all variables in Oracle Loader for Hadoop: In the hadoop command to run
Oracle Loader for Hadoop, use the generic options (-D and -conf).

You can use the Hive CLI to test the expression and ensure that it returns the expected
results.

The following examples assume a source table defined with this command:

CREATE TABLE t(c string)
 PARTITIONED BY (p1 string, p2 int, p3 boolean, p4 string, p5 timestamp);

Example 3–5 Nested Expressions

p1 like 'abc%' or (p5 >= '2010-06-20' and p5 <= '2010-07-03')

Example 3–6 Built-in Functions

year(p5) = 2014

Example 3–7 Bad Usage: Columns That Are Not Used to Partition the Table

This example shows that using c, a column that is not used to partition the table, is
unnecessary and can cause unexpected results.

This example is equivalent to p2 > 35:

p2 > 35 and c like 'abc%'

Oracle Loader for Hadoop Configuration Property Reference

Oracle Loader for Hadoop 3-33

This example loads all partitions. All partitions could contain c like 'abc%, so no
partitions are filtered out.

 p2 > 35 or c like 'abc%'

oracle.hadoop.loader.input.hive.tableName
Type: String

Default Value: Not defined

Description: The name of the Hive table where the input data is stored.

oracle.hadoop.loader.input.initialFieldEncloser
Type: String

Default Value: Not defined

Description: A character that indicates the beginning of a field. The value can be either
a single character or \uHHHH, where HHHH is the character's UTF-16 encoding. To restore
the default setting (no encloser), enter a zero-length value. A field encloser cannot
equal the terminator or white-space character defined for the input format.

When this property is set, the parser attempts to read each field as an enclosed token
(value) before reading it as an unenclosed token. If the field enclosers are not set, then
the parser reads each field as an unenclosed token.

If you set this property but not
oracle.hadoop.loader.input.trailingFieldEncloser, then the same value is used
for both properties.

oracle.hadoop.loader.input.regexCaseInsensitive
Type: Boolean

Default Value: false

Description: Controls whether pattern matching is case-sensitive. Set to true to ignore
case, so that "string" matches "String", "STRING", "string", "StRiNg", and so forth. By
default, "string" matches only "string".

This property is the same as theinput.regex.case.insensitive property of
org.apache.hadoop.hive.contrib.serde2.RegexSerDe.

oracle.hadoop.loader.input.regexPattern
Type: Text

Default Value: Not defined

Description: The pattern string for a regular expression.

The regular expression must match each text line in its entirety. For example, a correct
regex pattern for input line "a,b,c," is "([^,]*),([^,]*),([^,]*),". However,
"([^,]*)," is invalid, because the expression is not applied repeatedly to a line of
input text.

RegexInputFormat uses the capturing groups of regular expression matching as fields.
The special group zero is ignored because it stands for the entire input line.

This property is the same as the input.regex property of
org.apache.hadoop.hive.contrib.serde2.RegexSerDe.

Oracle Loader for Hadoop Configuration Property Reference

3-34 Oracle Big Data Connectors User's Guide

oracle.hadoop.loader.input.trailingFieldEncloser
Type: String

Default Value: The value of oracle.hadoop.loader.input.initialFieldEncloser

Description: Identifies a character that marks the end of a field. The value can be
either a single character or \uHHHH, where HHHH is the character's UTF-16 encoding. For
no trailing encloser, enter a zero-length value.

A field encloser cannot be the terminator or a white-space character defined for the
input format.

If the trailing field encloser character is embedded in an input field, then the character
must be doubled up to be parsed as literal text. For example, an input field must have
'' (two single quotes) to load ' (one single quote).

If you set this property, then you must also set
oracle.hadoop.loader.input.initialFieldEncloser.

oracle.hadoop.loader.loadByPartition
Type: Boolean

Default Value: true

Description: Specifies a partition-aware load. Oracle Loader for Hadoop organizes the
output by partition for all output formats on the Hadoop cluster; this task does not
impact the resources of the database system.

DelimitedTextOutputFormat and DataPumpOutputFormat generate multiple files, and
each file contains the records from one partition. For DelimitedTextOutputFormat, this
property also controls whether the PARTITION keyword appears in the generated
control files for SQL*Loader.

OCIOutputFormat requires partitioned tables. If you set this property to false, then
OCIOutputFormat turns it back on. For the other output formats, you can set
loadByPartition to false, so that Oracle Loader for Hadoop handles a partitioned
table as if it were nonpartitioned.

oracle.hadoop.loader.loaderMap.columnNames
Type: String

Default Value: Not defined

Description: A comma-separated list of column names in the target table, in any order.
The names can be quoted or unquoted. Quoted names begin and end with double
quotes (") and are used exactly as entered. Unquoted names are converted to upper
case.

You must set oracle.hadoop.loader.loaderMap.targetTable, or this property is
ignored. You can optionally set oracle.hadoop.loader.loaderMap.column_
name.field and oracle.hadoop.loader.loaderMap.column_name.format.

oracle.hadoop.loader.loaderMap.column_name.field
Type: String

See Also: For descriptions of regular expressions and capturing
groups, the entry for java.util.regex in the Java Platform Standard
Edition 6 API Specification at

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pat
tern.html

Oracle Loader for Hadoop Configuration Property Reference

Oracle Loader for Hadoop 3-35

Default Value: Normalized column name

Description: The name of a field that contains Avro records, which is mapped to the
column identified in the property name. The column name can be quoted or unquoted.
A quoted name begins and ends with double quotes (") and is used exactly as entered.
An unquoted name is converted to upper case. Optional.

You must set oracle.hadoop.loader.loaderMap.columnNames, or this property is
ignored.

oracle.hadoop.loader.loaderMap.column_name.format
Type: String

Default Value: Not defined

Description: Specifies the data format of the data being loaded into the column
identified in the property name. Use a java.text.SimpleDateformat pattern for a date
format or regular expression patterns for text. Optional.

You must set oracle.hadoop.loader.loaderMap.columnNames, or this property is
ignored.

oracle.hadoop.loader.loaderMap.targetTable
Type: String

Default Value: Not defined

Description: A schema-qualified name for the table to be loaded. This property takes
precedence over oracle.hadoop.loader.loaderMapFile.

To load a subset of columns, set the oracle.hadoop.loader.loaderMap.columnNames
property. With columnNames, you can optionally set
oracle.hadoop.loader.loaderMap.column_name.field to specify the names of the
fields that are mapped to the columns, and
oracle.hadoop.loader.loaderMap.column_name.format to specify the format of the
data in those fields. If all the columns of a table will be loaded, and the input field
names match the database column names, then you do not need to set columnNames.

oracle.hadoop.loader.loaderMapFile
Loader maps are deprecated starting with Release 2.3. The
oracle.hadoop.loader.loaderMap.* configuration properties replace loader map
files. See "Manual Mapping" on page 3-16.

oracle.hadoop.loader.logBadRecords
Type: Boolean

Default Value: false

Description: Controls whether Oracle Loader for Hadoop logs bad records to a file.

This property applies only to records rejected by input formats and mappers. It does
not apply to errors encountered by the output formats or by the sampling feature.

oracle.hadoop.loader.log4j.propertyPrefix
Type: String

Default Value: log4j.logger.oracle.hadoop.loader

Description: Identifies the prefix used in Apache log4j properties loaded from its
configuration file.

Oracle Loader for Hadoop enables you to specify log4j properties in the hadoop
command using the -conf and -D options. For example:

Oracle Loader for Hadoop Configuration Property Reference

3-36 Oracle Big Data Connectors User's Guide

-D log4j.logger.oracle.hadoop.loader.OraLoader=DEBUG
-D log4j.logger.oracle.hadoop.loader.metadata=INFO

All configuration properties starting with this prefix are loaded into log4j. They
override the settings for the same properties that log4j loaded from
${log4j.configuration}. The overrides apply to the Oracle Loader for Hadoop job
driver, and its map and reduce tasks.

The configuration properties are copied to log4j with RAW values; any variable
expansion is done for log4j. Any configuration variables to be used in the expansion
must also start with this prefix.

oracle.hadoop.loader.olh_home
Type: String

Default Value: Value of the OLH_HOME environment variable

Description: The path of the Oracle Loader for Hadoop home directory on the node
where you start the OraLoader job. This path identifies the location of the required
libraries.

oracle.hadoop.loader.olhcachePath
Type: String

Default Value: ${mapred.output.dir}/.../olhcache

Description: Identifies the full path to an HDFS directory where Oracle Loader for
Hadoop can create files that are loaded into the MapReduce distributed cache.

The distributed cache is a facility for caching large, application-specific files and
distributing them efficiently across the nodes in a cluster.

oracle.hadoop.loader.output.dirpathBufsize
Type: Integer

Default Value: 131072 (128 KB)

Description: Sets the size in bytes of the direct path stream buffer for
OCIOutputFormat. Values are rounded up to the next multiple of 8 KB.

oracle.hadoop.loader.output.escapeEnclosers
Type: Boolean

Default Value: false

Description: Controls whether the embedded trailing encloser character is handled as
literal text (that is, escaped). Set this property to true when a field may contain the
trailing enclosure character as part of the data value. See
oracle.hadoop.loader.output.trailingFieldEncloser.

oracle.hadoop.loader.output.fieldTerminator
Type: String

Default Value: , (comma)

See Also: The description of
org.apache.hadoop.filecache.DistributedCache in the Java
documentation at

http://hadoop.apache.org/

Oracle Loader for Hadoop Configuration Property Reference

Oracle Loader for Hadoop 3-37

Description: A character that indicates the end of an output field for
DelimitedTextInputFormat. The value can be either a single character or \uHHHH,
where HHHH is the character's UTF-16 encoding.

oracle.hadoop.loader.output.granuleSize
Type: Integer

Default Value: 10240000

Description: The granule size in bytes for generated Data Pump files.

A granule determines the work load for a parallel process (PQ slave) when loading a
file through the ORACLE_DATAPUMP access driver.

oracle.hadoop.loader.output.initialFieldEncloser
Type: String

Default Value: Not defined

Description: A character generated in the output to identify the beginning of a field.
The value must be either a single character or \uHHHH, where HHHH is the character's
UTF-16 encoding. A zero-length value means that no enclosers are generated in the
output (default value).

Use this property when a field may contain the value of
oracle.hadoop.loader.output.fieldTerminator. If a field may also contain the value
of oracle.hadoop.loader.output.trailingFieldEncloser, then set
oracle.hadoop.loader.output.escapeEnclosers to true.

If you set this property, then you must also set
oracle.hadoop.loader.output.trailingFieldEncloser.

oracle.hadoop.loader.output.trailingFieldEncloser
Type: String

Default Value: Value of oracle.hadoop.loader.output.initialFieldEncloser

Description: A character generated in the output to identify the end of a field. The
value must be either a single character or \uHHHH, where HHHH is the character's UTF-16
encoding. A zero-length value means that there are no enclosers (default value).

Use this property when a field may contain the value of
oracle.hadoop.loader.output.fieldTerminator. If a field may also contain the value
of oracle.hadoop.loader.output.trailingFieldEncloser, then set
oracle.hadoop.loader.output.escapeEnclosers to true.

If you set this property, then you must also set
oracle.hadoop.loader.output.initialFieldEncloser.

oracle.hadoop.loader.rejectLimit
Type: Integer

Default Value: 1000

Description: The maximum number of rejected or skipped records allowed before the
job stops running. A negative value turns off the reject limit and allows the job to run
to completion.

If mapred.map.tasks.speculative.execution is true (the default), then the number
of rejected records may be inflated temporarily, causing the job to stop prematurely.

See Also: Oracle Database Utilities for more information about the
ORACLE_DATAPUMP access driver.

Oracle Loader for Hadoop Configuration Property Reference

3-38 Oracle Big Data Connectors User's Guide

Input format errors do not count toward the reject limit because they are irrecoverable
and cause the map task to stop. Errors encountered by the sampling feature or the
online output formats do not count toward the reject limit either.

oracle.hadoop.loader.sampler.enableSampling
Type: Boolean

Default Value: true

Description: Controls whether the sampling feature is enabled. Set this property to
false to disable sampling.

Even when enableSampling is set to true, the loader automatically disables sampling
if it is unnecessary, or if the loader determines that a good sample cannot be made. For
example, the loader disables sampling if the table is not partitioned, the number of
reducer tasks is less than two, or there is too little input data to compute a good load
balance. In these cases, the loader returns an informational message.

oracle.hadoop.loader.sampler.hintMaxSplitSize
Type: Integer

Default Value: 1048576 (1 MB)

Description: Sets the Hadoop mapred.max.split.size property for the sampling
process; the value of mapred.max.split.size does not change for the job
configuration. A value less than 1 is ignored.

Some input formats (such as FileInputFormat) use this property as a hint to
determine the number of splits returned by getSplits. Smaller values imply that more
chunks of data are sampled at random, which results in a better sample.

Increase this value for data sets with tens of terabytes of data, or if the input format
getSplits method throws an out-of-memory error.

Although large splits are better for I/O performance, they are not necessarily better for
sampling. Set this value small enough for good sampling performance, but no smaller.
Extremely small values can cause inefficient I/O performance, and can cause
getSplits to run out of memory by returning too many splits.

The org.apache.hadoop.mapreduce.lib.input.FileInputFormat method always
returns splits at least as large as the minimum split size setting, regardless of the value
of this property.

oracle.hadoop.loader.sampler.hintNumMapTasks
Type: Integer

Default Value: 100

Description: Sets the value of the Hadoop mapred.map.tasks configuration property
for the sampling process; the value of mapred.map.tasks does not change for the job
configuration. A value less than 1 is ignored.

Some input formats (such as DBInputFormat) use this property as a hint to determine
the number of splits returned by the getSplits method. Higher values imply that
more chunks of data are sampled at random, which results in a better sample.

Increase this value for data sets with more than a million rows, but remember that
extremely large values can cause getSplits to run out of memory by returning too
many splits.

oracle.hadoop.loader.sampler.loadCI
Type: Decimal

Oracle Loader for Hadoop Configuration Property Reference

Oracle Loader for Hadoop 3-39

Default Value: 0.95

Description: The statistical confidence indicator for the maximum reducer load factor.

This property accepts values greater than or equal to 0.5 and less than 1 (0.5 <= value
< 1). A value less than 0.5 resets the property to the default value. Typical values are
0.90, 0.95, and 0.99.

See oracle.hadoop.loader.sampler.maxLoadFactor.

oracle.hadoop.loader.sampler.maxHeapBytes
Type: Integer

Default Value: -1

Description: Specifies in bytes the maximum amount of memory available to the
sampler.

Sampling stops when one of these conditions is true:

■ The sampler has collected the minimum number of samples required for load
balancing.

■ The percent of sampled data exceeds
oracle.hadoop.loader.sampler.maxSamplesPct.

■ The number of sampled bytes exceeds
oracle.hadoop.loader.sampler.maxHeapBytes. This condition is not imposed
when the property is set to a negative value.

oracle.hadoop.loader.sampler.maxLoadFactor
Type: Float

Default Value: 0.05 (5%)

Description: The maximum acceptable load factor for a reducer. A value of 0.05
indicates that reducers can be assigned up to 5% more data than their ideal load.

This property accepts values greater than 0. A value less than or equal to 0 resets the
property to the default value. Typical values are 0.05 and 0.1.

In a perfectly balanced load, every reducer is assigned an equal amount of work (or
load). The load factor is the relative overload for each reducer, calculated as (assigned_
load - ideal_load)/ideal_load. If load balancing is successful, the job runs within the
maximum load factor at the specified confidence.

See oracle.hadoop.loader.sampler.loadCI.

oracle.hadoop.loader.sampler.maxSamplesPct
Type: Float

Default Value: 0.01 (1%)

Description: Sets the maximum sample size as a fraction of the number of records in
the input data. A value of 0.05 indicates that the sampler never samples more than 5%
of the total number of records.

This property accepts a range of 0 to 1 (0% to 100%). A negative value disables it.

Sampling stops when one of these conditions is true:

■ The sampler has collected the minimum number of samples required for load
balancing, which can be fewer than the number set by this property.

■ The percent of sampled data exceeds
oracle.hadoop.loader.sampler.maxSamplesPct.

Oracle Loader for Hadoop Configuration Property Reference

3-40 Oracle Big Data Connectors User's Guide

■ The number of sampled bytes exceeds
oracle.hadoop.loader.sampler.maxHeapBytes. This condition is not imposed
when the property is set to a negative value.

oracle.hadoop.loader.sampler.minSplits
Type: Integer

Default Value: 5

Description: The minimum number of input splits that the sampler reads from before
it makes any evaluation of the stopping condition. If the total number of input splits is
less than minSplits, then the sampler reads from all the input splits.

A number less than or equal to 0 is the same as a value of 1.

oracle.hadoop.loader.sampler.numThreads
Type: Integer

Default Value: 5

Description: The number of sampler threads. A higher number of threads allows
higher concurrency in sampling. A value of 1 disables multithreading for the sampler.

Set the value based on the processor and memory resources available on the node
where you start the Oracle Loader for Hadoop job.

oracle.hadoop.loader.sortKey
Type: String

Default Value: Not defined

Description: A comma-delimited list of column names that forms a key for sorting
output records within a reducer group.

The column names can be quoted or unquoted identifiers:

■ A quoted identifier begins and ends with double quotation marks (").

■ An unquoted identifier is converted to uppercase before use.

oracle.hadoop.loader.tableMetadataFile
Type: String

Default Value: Not defined

Description: Path to the target table metadata file. Set this property when running in
offline database mode.

Use the file:// syntax to specify a local file, for example:

file:///home/jdoe/metadata.xml

To create the table metadata file, run the OraLoaderMetadata utility. See
"OraLoaderMetadata Utility" on page 3-9.

oracle.hadoop.loader.targetTable
Deprecated. Use oracle.hadoop.loader.loaderMap.targetTable.

Oracle NoSQL Database Configuration Properties

oracle.kv.kvstore
Type: String

Default Value: Not defined

Oracle Loader for Hadoop Configuration Property Reference

Oracle Loader for Hadoop 3-41

Description: The name of the KV store with the source data.

oracle.kv.hosts
Type: String

Default Value: Not defined

Description: An array of one or more hostname:port pairs that identify the hosts in the
KV store with the source data. Separate multiple pairs with commas.

oracle.kv.batchSize
Type: Key

Default Value: Not defined

Description: The desired number of keys for KVAvroInputFormatto fetch during each
network round trip. A value of zero (0) sets the property to a default value.

oracle.kv.parentKey
Type: String

Default Value: Not defined

Description: Restricts the returned values to only the child key-value pairs of the
specified key. A major key path must be a partial path, and a minor key path must be
empty. A null value (the default) does not restrict the output, and so
KVAvroInputFormat returns all keys in the store.

oracle.kv.subRange
Type: KeyRange

Default Value: Not defined

Description: Further restricts the returned values to a particular child under the parent
key specified by oracle.kv.parentKey.

oracle.kv.depth
Type: Depth

Default Value: PARENT_AND_DESCENDENTS

Description: Restricts the returned values to a particular hierarchical depth under the
value of oracle.kv.parentKey. The following keywords are valid values:

■ CHILDREN_ONLY: Returns the children, but not the specified parent.

■ DESCENDANTS_ONLY: Returns all descendants, but not the specified parent.

■ PARENT_AND_CHILDREN: Returns the children and the parent.

■ PARENT_AND_DESCENDANTS: Returns all descendants and the parent.

oracle.kv.consistency
Type: Consistency

Default Value: NONE_REQUIRED

Description: The consistency guarantee for reading child key-value pairs. The
following keywords are valid values:

■ ABSOLUTE: Requires the master to service the transaction so that consistency is
absolute.

■ NONE_REQUIRED: Allows replicas to service the transaction, regardless of the state of
the replicas relative to the master.

Third-Party Licenses for Bundled Software

3-42 Oracle Big Data Connectors User's Guide

oracle.kv.timeout
Type: Long

Default Value:

Description: Sets a maximum time interval in milliseconds for retrieving a selection of
key-value pairs. A value of zero (0) sets the property to its default value.

oracle.kv.formatterClass
Type: String

Default Value: Not defined

Description: Specifies the name of a class that implements the AvroFormatter
interface to format KeyValueVersion instances into Avro IndexedRecord strings.

Because the Avro records from Oracle NoSQL Database pass directly to Oracle Loader
for Hadoop, the NoSQL keys are not available for mapping into the target Oracle
Database table. However, the formatter class receives both the NoSQL key and value,
enabling the class to create and return a new Avro record that contains both the value
and key, which can be passed to Oracle Loader for Hadoop.

Third-Party Licenses for Bundled Software
Oracle Loader for Hadoop installs the following third-party products:

■ Apache Avro 1.7.3

■ Apache Commons Mathematics Library 2.2

■ Jackson JSON 1.8.8

Oracle Loader for Hadoop includes Oracle 12c Release 1(12.1) client libraries. For
information about third party products included with Oracle Database 12c Release 1
(12.1), refer to Oracle Database Licensing Information.

Oracle Loader for Hadoop builds and tests with Hadoop 0.20.2.

Unless otherwise specifically noted, or as required under the terms of the third
party license (e.g., LGPL), the licenses and statements herein, including all
statements regarding Apache-licensed code, are intended as notices only.

Apache Licensed Code
The following is included as a notice in compliance with the terms of the Apache 2.0
License, and applies to all programs licensed under the Apache 2.0 license:

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

A copy of the license is also reproduced below.

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

Third-Party Licenses for Bundled Software

Oracle Loader for Hadoop 3-43

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions

"License" shall mean the terms and conditions for use, reproduction, and
distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright
owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that
control, are controlled by, or are under common control with that entity. For the
purposes of this definition, "control" means (i) the power, direct or indirect, to
cause the direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding
shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions
granted by this License.

"Source" form shall mean the preferred form for making modifications, including
but not limited to software source code, documentation source, and configuration
files.

"Object" form shall mean any form resulting from mechanical transformation or
translation of a Source form, including but not limited to compiled object code,
generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form,
made available under the License, as indicated by a copyright notice that is
included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is
based on (or derived from) the Work and for which the editorial revisions,
annotations, elaborations, or other modifications represent, as a whole, an original
work of authorship. For the purposes of this License, Derivative Works shall not
include works that remain separable from, or merely link (or bind by name) to the
interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version
of the Work and any modifications or additions to that Work or Derivative Works
thereof, that is intentionally submitted to Licensor for inclusion in the Work by the
copyright owner or by an individual or Legal Entity authorized to submit on
behalf of the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent to the
Licensor or its representatives, including but not limited to communication on
electronic mailing lists, source code control systems, and issue tracking systems
that are managed by, or on behalf of, the Licensor for the purpose of discussing
and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as "Not a
Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of
whom a Contribution has been received by Licensor and subsequently
incorporated within the Work.

Third-Party Licenses for Bundled Software

3-44 Oracle Big Data Connectors User's Guide

2. Grant of Copyright License. Subject to the terms and conditions of this License,
each Contributor hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable copyright license to reproduce, prepare
Derivative Works of, publicly display, publicly perform, sublicense, and distribute
the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each
Contributor hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section) patent license
to make, have made, use, offer to sell, sell, import, and otherwise transfer the
Work, where such license applies only to those patent claims licensable by such
Contributor that are necessarily infringed by their Contribution(s) alone or by
combination of their Contribution(s) with the Work to which such Contribution(s)
was submitted. If You institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution
incorporated within the Work constitutes direct or contributory patent
infringement, then any patent licenses granted to You under this License for that
Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or
Derivative Works thereof in any medium, with or without modifications, and in
Source or Object form, provided that you meet the following conditions:

a. You must give any other recipients of the Work or Derivative Works a copy of
this License; and

b. You must cause any modified files to carry prominent notices stating that You
changed the files; and

c. You must retain, in the Source form of any Derivative Works that You
distribute, all copyright, patent, trademark, and attribution notices from the
Source form of the Work, excluding those notices that do not pertain to any
part of the Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its distribution, then any
Derivative Works that You distribute must include a readable copy of the
attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the
following places: within a NOTICE text file distributed as part of the
Derivative Works; within the Source form or documentation, if provided along
with the Derivative Works; or, within a display generated by the Derivative
Works, if and wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and do not modify the
License. You may add Your own attribution notices within Derivative Works
that You distribute, alongside or as an addendum to the NOTICE text from the
Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may
provide additional or different license terms and conditions for use, reproduction,
or distribution of Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies
with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any
Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any
additional terms or conditions. Notwithstanding the above, nothing herein shall

Third-Party Licenses for Bundled Software

Oracle Loader for Hadoop 3-45

supersede or modify the terms of any separate license agreement you may have
executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names,
trademarks, service marks, or product names of the Licensor, except as required
for reasonable and customary use in describing the origin of the Work and
reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in
writing, Licensor provides the Work (and each Contributor provides its
Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS
OF ANY KIND, either express or implied, including, without limitation, any
warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are
solely responsible for determining the appropriateness of using or redistributing
the Work and assume any risks associated with Your exercise of permissions under
this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort
(including negligence), contract, or otherwise, unless required by applicable law
(such as deliberate and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a result of this
License or out of the use or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or malfunction, or
any and all other commercial damages or losses), even if such Contributor has
been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or
Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights
consistent with this License. However, in accepting such obligations, You may act
only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each
Contributor harmless for any liability incurred by, or claims asserted against, such
Contributor by reason of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work
To apply the Apache License to your work, attach the following boilerplate notice,
with the fields enclosed by brackets "[]" replaced with your own identifying
information. (Do not include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class
name and description of purpose be included on the same "printed page" as the
copyright notice for easier identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Third-Party Licenses for Bundled Software

3-46 Oracle Big Data Connectors User's Guide

This product includes software developed by The Apache Software Foundation
(http://www.apache.org/) (listed below):

Apache Avro 1.7.3
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
Apache Avro except in compliance with the License. You may obtain a copy of the
License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Apache Commons Mathematics Library 2.2
Copyright 2001-2011 The Apache Software Foundation

Licensed under the Apache License, Version 2.0 (the "License"); you may not use the
Apache Commons Mathematics library except in compliance with the License. You
may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Apache Hadoop 0.20.0
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
Apache Avro except in compliance with the License. You may obtain a copy of the
License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Jackson JSON 1.8.8
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
library except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Part III
Part III Oracle XQuery for Hadoop

This part contains the following chapters:

■ Chapter 4, "Using Oracle XQuery for Hadoop"

■ Chapter 5, "Oracle XQuery for Hadoop Reference"

■ Chapter 6, "Oracle XML Extensions for Hive"

4

Using Oracle XQuery for Hadoop 4-1

4Using Oracle XQuery for Hadoop

This chapter explains how to use Oracle XQuery for Hadoop to extract and transform
large volumes of semistructured data. It contains the following sections:

■ What Is Oracle XQuery for Hadoop?

■ Getting Started With Oracle XQuery for Hadoop

■ About the Oracle XQuery for Hadoop Functions

■ Creating an XQuery Transformation

■ Running Queries

■ Running Queries from Apache Oozie

■ Oracle XQuery for Hadoop Configuration Properties

■ Third-Party Licenses for Bundled Software

What Is Oracle XQuery for Hadoop?
Oracle XQuery for Hadoop is a transformation engine for semistructured big data.
Oracle XQuery for Hadoop runs transformations expressed in the XQuery language by
translating them into a series of MapReduce jobs, which are executed in parallel on an
Apache Hadoop cluster. You can focus on data movement and transformation logic,
instead of the complexities of Java and MapReduce, without sacrificing scalability or
performance.

The input data can be located in a file system accessible through the Hadoop File
System API, such as the Hadoop Distributed File System (HDFS), or stored in Oracle
NoSQL Database. Oracle XQuery for Hadoop can write the transformation results to
Hadoop files, Oracle NoSQL Database, or Oracle Database.

Oracle XQuery for Hadoop also provides extensions to Apache Hive to support
massive XML files.

Oracle XQuery for Hadoop is based on mature industry standards including XPath,
XQuery, and XQuery Update Facility. It is fully integrated with other Oracle products,
which enables Oracle XQuery for Hadoop to:

■ Load data efficiently into Oracle Database using Oracle Loader for Hadoop.

■ Provide read and write support to Oracle NoSQL Database.

Figure 4–1 provides an overview of the data flow using Oracle XQuery for Hadoop.

Getting Started With Oracle XQuery for Hadoop

4-2 Oracle Big Data Connectors User's Guide

Figure 4–1 Oracle XQuery for Hadoop Data Flow

Getting Started With Oracle XQuery for Hadoop
Oracle XQuery for Hadoop is designed for use by XQuery developers. If you are
already familiar with XQuery, then you are ready to begin. However, if you are new to
XQuery, then you must first acquire the basics of the language. This guide does not
attempt to cover this information.

See Also:

■ "XQuery Tutorial" by W3Schools at

http://www.w3schools.com/xquery/

■ XQuery 3.0: An XML Query Language at

http://www.w3.org/TR/xquery-30

Getting Started With Oracle XQuery for Hadoop

Using Oracle XQuery for Hadoop 4-3

Basic Steps
Take the following basic steps when using Oracle XQuery for Hadoop:

1. The first time you use Oracle XQuery for Hadoop, ensure that the software is
installed and configured.

See "Oracle XQuery for Hadoop Setup" on page 1-13.

2. Log in to either a node in the Hadoop cluster or a system set up as a Hadoop client
for the cluster.

3. Create an XQuery transformation that uses the Oracle XQuery for Hadoop
functions. It can use various adapters for input and output.

See "About the Oracle XQuery for Hadoop Functions" on page 4-4 and "Creating
an XQuery Transformation" on page 4-6.

4. Execute the XQuery transformation.

See "Running Queries" on page 4-13.

Example: Hello World!
Follow these steps to create and run a simple query using Oracle XQuery for Hadoop:

1. Create a text file named hello.txt in the current directory that contains the line
Hello.

$ echo "Hello" > hello.txt

2. Copy the file to HDFS:

$ hdfs dfs -copyFromLocal hello.txt

3. Create a query file named hello.xq in the current directory with the following
content:

import module "oxh:text";
for $line in text:collection("hello.txt")
return text:put($line || " World!")

4. Run the query:

$ hadoop jar $OXH_HOME/lib/oxh.jar hello.xq -output ./myout -print
13/11/21 02:41:57 INFO hadoop.xquery: OXH: Oracle XQuery for Hadoop 4.0.1
((build 4.0.1-cdh5.0.0-mr1 @mr2). Copyright (c) 2014, Oracle. All rights
reserved.
13/11/21 02:42:01 INFO hadoop.xquery: Submitting map-reduce job
"oxh:hello.xq#0" id="3593921f-c50c-4bb8-88c0-6b63b439572b.0",
inputs=[hdfs://bigdatalite.localdomain:8020/user/oracle/hello.txt],
output=myout
 .
 .
 .

5. Check the output file:

$ hdfs dfs -cat ./myout/part-m-00000
Hello World!

About the Oracle XQuery for Hadoop Functions

4-4 Oracle Big Data Connectors User's Guide

About the Oracle XQuery for Hadoop Functions
Oracle XQuery for Hadoop reads from and writes to big data sets using collection and
put functions:

■ A collection function reads data from Hadoop files or Oracle NoSQL Database as
a collection of items. A Hadoop file is one that is accessible through the Hadoop
File System API. On Oracle Big Data Appliance and most Hadoop clusters, this file
system is Hadoop Distributed File System (HDFS).

■ A put function adds a single item to a data set stored in Oracle Database, Oracle
NoSQL Database, or a Hadoop file.

The following is a simple example of an Oracle XQuery for Hadoop query that reads
items from one source and writes to another:

for $x in collection(...)
return put($x)

Oracle XQuery for Hadoop comes with a set of adapters that you can use to define put
and collection functions for specific formats and sources. Each adapter has two
components:

■ A set of built-in put and collection functions that are predefined for your
convenience.

■ A set of XQuery function annotations that you can use to define custom put and
collection functions.

Other commonly used functions are also included in Oracle XQuery for Hadoop.

About the Adapters
Following are brief descriptions of the Oracle XQuery for Hadoop adapters.

Avro File Adapter
The Avro file adapter provides access to Avro container files stored in HDFS. It
includes collection and put functions for reading from and writing to Avro container
files.

See "Avro File Adapter" on page 5-2.

JSON File Adapter
The JSON file adapter provides access to JSON files stored in HDFS. It contains a
collection function for reading JSON files, and a group of helper functions for parsing
JSON data directly. You must use another adapter to write the output.

See "JSON File Adapter" on page 5-20.

Oracle Database Adapter
The Oracle Database adapter loads data into Oracle Database. This adapter supports a
custom put function for direct output to a table in an Oracle database using JDBC or
OCI. If a live connection to the database is not available, the adapter also supports
output to Data Pump or delimited text files in HDFS; the files can be loaded into the
Oracle database with a different utility, such as SQL*Loader, or using external tables.
This adapter does not move data out of the database, and therefore does not have
collection or get functions.

See "Software Requirements" on page 1-11 for the supported versions of Oracle
Database, and "Oracle Database Adapter" on page 5-29.

About the Oracle XQuery for Hadoop Functions

Using Oracle XQuery for Hadoop 4-5

Oracle NoSQL Database Adapter
The Oracle NoSQL Database adapter provides access to data stored in Oracle NoSQL
Database. The data can be read from or written as Avro, XML, binary XML, or text.
This adapter includes collection, get, and put functions.

See "Oracle NoSQL Database Adapter" on page 5-39.

Sequence File Adapter
The sequence file adapter provides access to Hadoop sequence files. A sequence file is
a Hadoop format composed of key-value pairs.

This adapter includes collection and put functions for reading from and writing to
HDFS sequence files that contain text, XML, or binary XML.

See "Sequence File Adapter" on page 5-59.

Solr Adapter
The Solr adapter provides functions to create full-text indexes and load them into
Apache Solr servers.

See "Solr Adapter" on page 5-70.

Text File Adapter
The text file adapter provides access to text files, such as CSV files. It contains
collection and put functions for reading from and writing to text files.

The JSON file adapter extends the support for JSON objects stored in text files.

See "Text File Adapter" on page 5-78 and "JSON File Adapter" on page 5-20.

XML File Adapter
The XML file adapter provides access to XML files stored in HDFS. It contains
collection functions for reading large XML files. You must use another adapter to write
the output.

See "XML File Adapter" on page 5-95.

About Other Modules for Use With Oracle XQuery for Hadoop
You can use functions from these additional modules in your queries:

Standard XQuery Functions
The standard XQuery math functions are available.

See "About XQuery Language Support" on page 4-7.

Hadoop Functions
The Hadoop module is a group of functions that are specific to Hadoop.

See "Hadoop Module" on page 5-111.

Duration, Date, and Time Functions
This group of functions parse duration, date, and time values.

See "Duration, Date, and Time Functions" on page 5-104.

String-Processing Functions
These functions add and remove white space that surrounds data values.

See "String Functions" on page 5-108.

Creating an XQuery Transformation

4-6 Oracle Big Data Connectors User's Guide

Creating an XQuery Transformation
This chapter describes how to create XQuery transformations using Oracle XQuery for
Hadoop. It contains the following topics:

■ XQuery Transformation Requirements

■ About XQuery Language Support

■ Accessing Data in the Hadoop Distributed Cache

■ Calling Custom Java Functions from XQuery

■ Accessing User-Defined XQuery Library Modules and XML Schemas

■ XQuery Transformation Examples

XQuery Transformation Requirements
You create a transformation for Oracle XQuery for Hadoop the same way as any other
XQuery transformation, except that you must comply with these additional
requirements:

■ The main XQuery expression (the query body) must be in one of the following
forms:

FLWOR1
or

(FLWOR1, FLWOR2,... , FLWORN)

In this syntax FLWOR is a top-level XQuery FLWOR expression "For, Let, Where,
Order by, Return" expression.

■ Each top-level FLWOR expression must have a for clause that iterates over an
Oracle XQuery for Hadoop collection function. This for clause cannot have a
positional variable.

See Chapter 5 for the collection functions.

■ Each top-level FLWOR expression can have optional let, where, and group by
clauses. Other types of clauses are invalid, such as order by, count, and window
clauses.

■ Each top-level FLWOR expression must return one or more results from calling an
Oracle XQuery for Hadoop put function. See Chapter 5 for the put functions.

■ The query body must be an updating expression. Because all put functions are
classified as updating functions, all Oracle XQuery for Hadoop queries are
updating queries.

In Oracle XQuery for Hadoop, a %*:put annotation indicates that the function is
updating. The %updating annotation or updating keyword is not required with it.

See Also: "FLWOR Expressions" in W3C XQuery 3.0: An XML Query
Language at

http://www.w3.org/TR/xquery-30/#id-flwor-expressions

See Also: For a description of updating expressions, "Extensions to
XQuery 1.0" in W3C XQuery Update Facility 1.0 at

http://www.w3.org/TR/xquery-update-10/#dt-updating-expressio
n

http://www.w3.org/TR/xquery-update-10/#dt-updating-expression
http://www.w3.org/TR/xquery-update-10/#dt-updating-expression

Creating an XQuery Transformation

Using Oracle XQuery for Hadoop 4-7

About XQuery Language Support
Oracle XQuery for Hadoop supports the XQuery 1.0 specification:

■ For the language, see W3C XQuery 1.0: An XML Query Language at

http://www.w3.org/TR/xquery/

■ For the functions, see W3C XQuery 1.0 and XPath 2.0 Functions and Operators at

http://www.w3.org/TR/xpath-functions/

In addition, Oracle XQuery for Hadoop supports the following XQuery 3.0 features.
The links are to the relevant sections of W3C XQuery 3.0: An XML Query Language.

■ group by clause

See http://www.w3.org/TR/xquery-30/#id-group-by

■ for clause with the allowing empty modifier

See http://www.w3.org/TR/xquery-30/#id-xquery-for-clause

■ Annotations

See http://www.w3.org/TR/xquery-30/#id-annotations

■ String concatenation expressions

See http://www.w3.org/TR/xquery-30/#id-string-concat-expr

■ Switch expression

See http://www.w3.org/TR/xquery-30/#id-switch

■ Simple map operator

See http://www.w3.org/TR/xquery-30/#id-map-operator

■ Private functions and variables

See http://www.w3.org/TR/xquery-30/#FunctionDeclns

See http://www.w3.org/TR/xquery-30/#id-variable-declarations

■ Casting to a union or list type

See http://www.w3.org/TR/xquery-30/#casting-to-union

See http://www.w3.org/TR/xquery-30/#casting-to-list

■ Support pure union types

See http://www.w3.org/TR/xquery-30/#dt-pure-union-type

■ Support validate type

See http://www.w3.org/TR/xquery-30/#id-validate

■ Standard functions:

fn:analyze-string
fn:unparsed-text
fn:unparsed-text-lines
fn:unparsed-text-available
fn:serialize
fn:parse-xml
fn:parse-xml-fragment
fn:generate-id
fn:tail
fn:head

Creating an XQuery Transformation

4-8 Oracle Big Data Connectors User's Guide

fn:has-children
fn:innermost
fn:outermost
See http://www.w3.org/TR/xpath-functions-30/

■ Trigonometric and exponential functions

See http://www.w3.org/TR/xpath-functions-30/#trigonometry

Accessing Data in the Hadoop Distributed Cache
You can use the Hadoop distributed cache facility to access auxiliary job data. This
mechanism can be useful in a join query when one side is a relatively small file. The
query might execute faster if the smaller file is accessed from the distributed cache.

To place a file into the distributed cache, use the -files Hadoop command line option
when calling Oracle XQuery for Hadoop. For a query to read a file from the
distributed cache, it must call the fn:doc function for XML, and either
fn:unparsed-text or fn:unparsed-text-lines for text files. See Example 7.

Calling Custom Java Functions from XQuery
Oracle XQuery for Hadoop is extensible with custom external functions implemented
in the Java language. A Java implementation must be a static method with the
parameter and return types as defined by the XQuery API for Java (XQJ) specification.

A custom Java function binding is defined in Oracle XQuery for Hadoop by
annotating an external function definition with the %ora-java:binding annotation.
This annotation has the following syntax:

%ora-java:binding("java.class.name[#method]")

java.class.name
The fully qualified name of a Java class that contains the implementation method.

method
A Java method name. It defaults to the XQuery function name. Optional.

See Example 8 for an example of %ora-java:binding.

All JAR files that contain custom Java functions must be listed in the -libjars
command line option. For example:

hadoop jar $OXH_HOME/lib/oxh.jar -libjars myfunctions.jar query.xq

Accessing User-Defined XQuery Library Modules and XML Schemas
Oracle XQuery for Hadoop supports user-defined XQuery library modules and XML
schemas when you comply with these criteria:

■ Locate the library module or XML schema file in the same directory where the
main query resides on the client calling Oracle XQuery for Hadoop.

■ Import the library module or XML schema from the main query using the location
URI parameter of the import module or import schema statement.

See Also: "XQuery API for Java (XQJ)" at

http://www.jcp.org/en/jsr/detail?id=225

Creating an XQuery Transformation

Using Oracle XQuery for Hadoop 4-9

■ Specify the library module or XML schema file in the -files command line option
when calling Oracle XQuery for Hadoop.

For an example of using user-defined XQuery library modules and XML schemas, see
Example 9.

XQuery Transformation Examples
For these examples, the following text files are in HDFS. The files contain a log of visits
to different web pages. Each line represents a visit to a web page and contains the
time, user name, page visited, and the status code.

mydata/visits1.log

2013-10-28T06:00:00, john, index.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200
2013-10-30T10:00:10, mike, index.html, 401

mydata/visits2.log

2013-10-30T10:00:01, john, index.html, 200
2013-10-30T10:05:20, john, about.html, 200
2013-11-01T08:00:08, laura, index.html, 200
2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200

Example 1 Basic Filtering
This query filters out pages visited by user kelly and writes those files into a text file:

import module "oxh:text";

for $line in text:collection("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
where $split[2] eq "kelly"
return text:put($line)

The query creates text files in the output directory that contain the following lines:

2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200

Example 2 Group By and Aggregation
The next query computes the number of page visits per day:

import module "oxh:text";

for $line in text:collection("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
let $time := xs:dateTime($split[1])
let $day := xs:date($time)
group by $day
return text:put($day || " => " || fn:count($line))

See Also: "Location URIs" in XQuery 3.0: An XML Query Language at

http://www.w3.org/TR/xquery-30/#id-module-handling-location-
uris

http://www.w3.org/TR/xquery-30/#id-module-handling-location-uris
http://www.w3.org/TR/xquery-30/#id-module-handling-location-uris

Creating an XQuery Transformation

4-10 Oracle Big Data Connectors User's Guide

The query creates text files that contain the following lines:

2013-10-28 => 3
2013-10-30 => 3
2013-11-01 => 1
2013-11-04 => 2

Example 3 Inner Joins
This example queries the following text file in HDFS, in addition to the other files. The
file contains user profile information such as user ID, full name, and age, separated by
colons (:).

mydata/users.txt

john:John Doe:45
kelly:Kelly Johnson:32
laura:Laura Smith:
phil:Phil Johnson:27

The following query performs a join between users.txt and the log files. It computes
how many times users older than 30 visited each page.

import module "oxh:text";

for $userLine in text:collection("mydata/users.txt")
let $userSplit := fn:tokenize($userLine, "\s*:\s*")
let $userId := $userSplit[1]
let $userAge := xs:integer($userSplit[3][. castable as xs:integer])

for $visitLine in text:collection("mydata/visits*.log")
let $visitSplit := fn:tokenize($visitLine, "\s*,\s*")
let $visitUserId := $visitSplit[2]
where $userId eq $visitUserId and $userAge gt 30
group by $page := $visitSplit[3]
return text:put($page || " " || fn:count($userLine))

The query creates text files that contain the following lines:

about.html 2
contact.html 1
index.html 4

The next query computes the number of visits for each user who visited any page; it
omits users who never visited any page.

import module "oxh:text";

for $userLine in text:collection("mydata/users.txt")
let $userSplit := fn:tokenize($userLine, "\s*:\s*")
let $userId := $userSplit[1]

for $visitLine in text:collection("mydata/visits*.log")
 [$userId eq fn:tokenize(., "\s*,\s*")[2]]

group by $userId
return text:put($userId || " " || fn:count($visitLine))

The query creates text files that contain the following lines:

john 3
kelly 4
laura 1

Creating an XQuery Transformation

Using Oracle XQuery for Hadoop 4-11

Example 4 Left Outer Joins
This example is similar to the second query in Example 3, but also counts users who
did not visit any page.

import module "oxh:text";

for $userLine in text:collection("mydata/users.txt")
let $userSplit := fn:tokenize($userLine, "\s*:\s*")
let $userId := $userSplit[1]

for $visitLine allowing empty in text:collection("mydata/visits*.log")
 [$userId eq fn:tokenize(., "\s*,\s*")[2]]

group by $userId
return text:put($userId || " " || fn:count($visitLine))

The query creates text files that contain the following lines:

john 3
kelly 4
laura 1
phil 0

Example 5 Semijoins
The next query finds users who have ever visited a page:

import module "oxh:text";

for $userLine in text:collection("mydata/users.txt")
let $userId := fn:tokenize($userLine, "\s*:\s*")[1]

where some $visitLine in text:collection("mydata/visits*.log")
satisfies $userId eq fn:tokenize($visitLine, "\s*,\s*")[2]

return text:put($userId)

The query creates text files that contain the following lines:

john
kelly
laura

Example 6 Multiple Outputs
The next query finds web page visits with a 401 code and writes them to trace* files
using the XQuery text:trace() function. It writes the remaining visit records into the
default output files.

import module "oxh:text";

for $visitLine in text:collection("mydata/visits*.log")
let $visitCode := xs:integer(fn:tokenize($visitLine, "\s*,\s*")[4])
return if ($visitCode eq 401) then text:trace($visitLine) else
text:put($visitLine)

Note: When the results of two collection functions are joined, only
equijoins are supported. If one or both sources are not from a
collection function, then any join condition is allowed.

Creating an XQuery Transformation

4-12 Oracle Big Data Connectors User's Guide

The query generates a trace* text file that contains the following line:

2013-10-30T10:00:10, mike, index.html, 401

The query also generates default output files that contain the following lines:

2013-10-30T10:00:01, john, index.html, 200
2013-10-30T10:05:20, john, about.html, 200
2013-11-01T08:00:08, laura, index.html, 200
2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200
2013-10-28T06:00:00, john, index.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200

Example 7 Accessing Auxiliary Input Data
The next query is an alternative version of the second query in Example 3, but it uses
the fn:unparsed-text-lines function to access a file in the Hadoop distributed cache:

import module "oxh:text";

for $visitLine in text:collection("mydata/visits*.log")
let $visitUserId := fn:tokenize($visitLine, "\s*,\s*")[2]

for $userLine in fn:unparsed-text-lines("users.txt")
let $userSplit := fn:tokenize($userLine, "\s*:\s*")
let $userId := $userSplit[1]

where $userId eq $visitUserId

group by $userId
return text:put($userId || " " || fn:count($visitLine))

The hadoop command to run the query must use the Hadoop -files option. See
"Accessing Data in the Hadoop Distributed Cache" on page 4-8.

hadoop jar $OXH_HOME/lib/oxh.jar -files users.txt query.xq

The query creates text files that contain the following lines:

john 3
kelly 4
laura 1

Example 8 Calling a Custom Java Function from XQuery
The next query formats input data using the java.lang.String#format method.

import module "oxh:text";

declare %ora-java:binding("java.lang.String#format")
 function local:string-format($pattern as xs:string, $data as xs:anyAtomicType*)
as xs:string external;

for $line in text:collection("mydata/users*.txt")
let $split := fn:tokenize($line, "\s*:\s*")
return text:put(local:string-format("%s,%s,%s", $split))

The query creates text files that contain the following lines:

john,John Doe,45
kelly,Kelly Johnson,32
laura,Laura Smith,

Running Queries

Using Oracle XQuery for Hadoop 4-13

phil,Phil Johnson,27

Example 9 Using User-defined XQuery Library Modules and XML Schemas
This example uses a library module named mytools.xq:

module namespace mytools = "urn:mytools";

declare %ora-java:binding("java.lang.String#format")
 function mytools:string-format($pattern as xs:string, $data as
xs:anyAtomicType*) as xs:string external;

The next query is equivalent to the previous one, but it calls a string-format function
from the mytools.xq library module:

import module namespace mytools = "urn:mytools" at "mytools.xq";
import module "oxh:text";

for $line in text:collection("mydata/users*.txt")
let $split := fn:tokenize($line, "\s*:\s*")
return text:put(mytools:string-format("%s,%s,%s", $split))

The query creates text files that contain the following lines:

john,John Doe,45
kelly,Kelly Johnson,32
laura,Laura Smith,
phil,Phil Johnson,27

Running Queries
To run a query, call the oxh utility using the hadoop jar command. The following is
the basic syntax:

hadoop jar $OXH_HOME/lib/oxh.jar [generic options] query.xq -output directory
[-clean] [-ls] [-print] [-sharelib hdfs_dir][-skiperrors] [-version]

Oracle XQuery for Hadoop Options

query.xq
Identifies the XQuery file. See "Creating an XQuery Transformation" on page 4-6.

-clean
Deletes all files from the output directory before running the query. If you use the
default directory, Oracle XQuery for Hadoop always cleans the directory, even when
this option is omitted.

-exportliboozie directory
Copies Oracle XQuery for Hadoop dependencies to the specified directory. Use this
option to add Oracle XQuery for Hadoop to the Hadoop distributed cache and the
Oozie shared library. External dependencies are also copied, so ensure that
environment variables such as KVHOME, OLH_HOME, and OXH_SOLR_MR_HOME are set for
use by the related adapters (Oracle NoSQL Database, Oracle Database, and Solr).

See Also: Java Platform Standard Edition 7 API Specification for Class
String at

http://docs.oracle.com/javase/7/docs/api/java/lang/String.ht
ml#format(java.lang.String, java.lang.Object...)

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#format(java.lang.String, java.lang.Object...)
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#format(java.lang.String, java.lang.Object...)

Running Queries

4-14 Oracle Big Data Connectors User's Guide

-ls
Lists the contents of the output directory after the query executes.

-output directory
Specifies the output directory of the query. The put functions of the file adapters create
files in this directory. Written values are spread across one or more files. The number
of files created depends on how the query is distributed among tasks. The default
output directory is /tmp/oxh-user_name/output.

See "About the Oracle XQuery for Hadoop Functions" on page 4-4 for a description of
put functions.

-print
Prints the contents of all files in the output directory to the standard output (your
screen). When printing Avro files, each record prints as JSON text.

-sharelib hdfs_dir
Specifies the HDFS folder location containing Oracle XQuery for Hadoop and
third-party libraries.

-skiperrors
Turns on error recovery, so that an error does not halt processing.

All errors that occur during query processing are counted, and the total is logged at
the end of the query. The error messages of the first 20 errors per task are also logged.
See these configuration properties:

oracle.hadoop.xquery.skiperrors.counters
oracle.hadoop.xquery.skiperrors.max
oracle.hadoop.xquery.skiperrors.log.max

-version
Displays the Oracle XQuery for Hadoop version and exits without running a query.

Generic Options
You can include any generic hadoop command-line option. Oracle XQuery for Hadoop
implements the org.apache.hadoop.util.Tool interface and follows the standard
Hadoop methods for building MapReduce applications.

The following generic options are commonly used with Oracle XQuery for Hadoop:

-conf job_config.xml
Identifies the job configuration file. See "Oracle XQuery for Hadoop Configuration
Properties" on page 4-18.

When you work with the Oracle Database or Oracle NoSQL Database adapters, you
can set various job properties in this file. See "Oracle Loader for Hadoop Configuration
Properties and Corresponding %oracle-property Annotations" on page 5-36 and
"Oracle NoSQL Database Adapter Configuration Properties" on page 5-56.

-D property=value
Identifies a configuration property. See "Oracle XQuery for Hadoop Configuration
Properties" on page 4-18.

-files
Specifies a comma-delimited list of files that are added to the distributed cache. See
"Accessing Data in the Hadoop Distributed Cache" on page 4-8.

Running Queries from Apache Oozie

Using Oracle XQuery for Hadoop 4-15

About Running Queries Locally
When developing queries, you can run them locally before submitting them to the
cluster. A local run enables you to see how the query behaves on small data sets and
diagnose potential problems quickly.

In local mode, relative URIs resolve against the local file system instead of HDFS, and
the query runs in a single process.

To run a query in local mode:

1. Set the Hadoop -jt and -fs generic arguments to local. This example runs the
query described in "Example: Hello World!" on page 4-3 in local mode:

$ hadoop jar $OXH_HOME/lib/oxh.jar -jt local -fs local ./hello.xq -output
./myoutput -print

2. Check the result file in the local output directory of the query, as shown in this
example:

$ cat ./myoutput/part-m-00000
Hello World!

Running Queries from Apache Oozie
Apache Oozie is a workflow tool that enables you to run multiple MapReduce jobs in a
specified order and, optionally, at a scheduled time. Oracle XQuery for Hadoop
provides an Oozie action node that you can use to run Oracle XQuery for Hadoop
queries from an Oozie workflow.

Getting Started Using the Oracle XQuery for Hadoop Oozie Action
Follow these steps to execute your queries in an Oozie workflow:

1. The first time you use Oozie with Oracle XQuery for Hadoop, ensure that Oozie is
configured correctly. See "Configuring Oozie for the Oracle XQuery for Hadoop
Action" on page 1-16.

2. Develop your queries in Oracle XQuery for Hadoop the same as always.

3. Create a workflow XML file like the one shown in Example 4–1. You can use the
XML elements listed in "Supported XML Elements" on page 4-16.

4. Set the Oozie job parameters. The following parameter is required:

oozie.use.system.libpath=true

See Example 4–3.

5. Run the job using syntax like the following:

oozie job -name http://example.com:11000/oozie -config filename -run

See Also: For full descriptions of the generic options, go to

http://hadoop.apache.org/docs/current/hadoop-project-dist/ha
doop-common/CommandsManual.html#Generic_Options

http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#Generic_Options
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/CommandsManual.html#Generic_Options

Running Queries from Apache Oozie

4-16 Oracle Big Data Connectors User's Guide

Supported XML Elements
The Oracle XQuery for Hadoop action extends Oozie's Java action. It supports the
following optional child XML elements with the same syntax and semantics as the
Java action:

■ archive

■ configuration

■ file

■ job-tracker

■ job-xml

■ name-node

■ prepare

In addition, the Oracle XQuery for Hadoop action supports the following elements:

■ script: The location of the Oracle XQuery for Hadoop query file. Required.

The query file must be in the workflow application directory. A relative path is
resolved against the application directory.

Example: <script>myquery.xq</script>

■ output: The output directory of the query. Required.

The output element has an optional clean attribute. Set this attribute to true to
delete the output directory before the query is run. If the output directory already
exists and the clean attribute is either not set or set to false, an error occurs. The
output directory cannot exist when the job runs.

Example: <output clean="true">/user/jdoe/myoutput</output>

Any error raised while running the query causes Oozie to perform the error transition
for the action.

Example: Hello World
This example uses the following files:

■ workflow.xml: Describes an Oozie action that sets two configuration values for the
query in hello.xq: an HDFS file and the string World!

The HDFS input file is /user/jdoe/data/hello.txt and contains this string:

Hello

See Example 4–1.

See Also: "Oozie Command Line Usage" in the Apache Oozie
Command Line Interface Utilities at

https://oozie.apache.org/docs/4.0.0/DG_
CommandLineTool.html#Oozie_Command_Line_Usage

See Also: The Java action description in the Oozie Specification at

https://oozie.apache.org/docs/4.0.0/WorkflowFunctionalSpec.h
tml#a3.2.7_Java_Action

https://oozie.apache.org/docs/4.0.0/WorkflowFunctionalSpec.html#a3.2.7_Java_Action
https://oozie.apache.org/docs/4.0.0/WorkflowFunctionalSpec.html#a3.2.7_Java_Action
https://oozie.apache.org/docs/4.0.0/DG_CommandLineTool.html#Oozie_Command_Line_Usage
https://oozie.apache.org/docs/4.0.0/DG_CommandLineTool.html#Oozie_Command_Line_Usage

Running Queries from Apache Oozie

Using Oracle XQuery for Hadoop 4-17

■ hello.xq: Runs a query using Oracle XQuery for Hadoop.

See Example 4–2.

■ job.properties: Lists the job properties for Oozie. See Example 4–3.

To run the example, use this command:

oozie job -oozie http://example.com:11000/oozie -config job.properties -run

After the job runs, the /user/jdoe/myoutput output directory contains a file with the
text "Hello World!"

Example 4–1 The workflow.xml File for Hello World

This file is named /user/jdoe/hello-oozie-oxh/workflow.xml. It uses variables that
are defined in the job.properties file.

<workflow-app xmlns="uri:oozie:workflow:0.4" name="oxh-helloworld-wf">
 <start to="hello-node"/>
 <action name="hello-node">
 <oxh xmlns="oxh:oozie-action:v1">
 <job-tracker>${jobTracker}</job-tracker>
 <name-node>${nameNode}</name-node>

 <!--
 The configuration can be used to parameterize the query.
 -->
 <configuration>
 <property>
 <name>myinput</name>
 <value>${nameNode}/user/jdoe/data/src.txt</value>
 </property>
 <property>
 <name>mysuffix</name>
 <value> World!</value>
 </property>
 </configuration>

 <script>hello.xq</script>

 <output clean="true">${nameNode}/user/jdoe/myoutput</output>

 </oxh>
 <ok to="end"/>
 <error to="fail"/>
 </action>
 <kill name="fail">
 <message>OXH failed: [${wf:errorMessage(wf:lastErrorNode())}]</message>
 </kill>
 <end name="end"/>
</workflow-app>

Example 4–2 The hello.xq File for Hello World

This file is named /user/jdoe/hello-oozie-oxh/hello.xq.

import module "oxh:text";

declare variable $input := oxh:property("myinput");
declare variable $suffix := oxh:property("mysuffix");

for $line in text:collection($input)

Oracle XQuery for Hadoop Configuration Properties

4-18 Oracle Big Data Connectors User's Guide

return
 text:put($line || $suffix)

Example 4–3 The job.properties File for Hello World

oozie.wf.application.path=hdfs://example.com:8020/user/jdoe/hello-oozie-oxh
nameNode=hdfs://example.com:8020
jobTracker=hdfs://example.com:8032
oozie.use.system.libpath=true

Oracle XQuery for Hadoop Configuration Properties
Oracle XQuery for Hadoop uses the generic methods of specifying configuration
properties in the hadoop command. You can use the -conf option to identify
configuration files, and the -D option to specify individual properties. See "Running
Queries" on page 4-13.

oracle.hadoop.xquery.lib.share
Type: String

Default Value: Not defined.

Description: Identifies an HDFS directory that contains the libraries for Oracle
XQuery for Hadoop and third-party software. For example:

http://path/to/shared/folder

All HDFS files must be in the same directory.

Alternatively, use the -sharelib option on the command line.

Pattern Matching: You can use pattern matching characters in a directory name. If
multiple directories match the pattern, then the directory with the most recent
modification timestamp is used.

To specify a directory name, use alphanumeric characters and, optionally, any of the
following special, pattern matching characters:

?
Matches any one character.

*
Matches zero or more characters.

[abc]
Matches one character from character set {a,b,c}.

[a-b]
Matches one character from the character range from a to b. Character a must be
less than or equal to character b.

[^a]
Matches one character that is not from the a character set or range. The carat (^)
must follow the opening bracket immediately (no spaces).

See Also: Hadoop documentation for job configuration files at

http://wiki.apache.org/hadoop/JobConfFile

Oracle XQuery for Hadoop Configuration Properties

Using Oracle XQuery for Hadoop 4-19

\c
Removes (escapes) any special meaning of character c.

{ab,cd}
Matches a string from the string set {ab, cd}.

{ab,c{de,fh}}
Matches a string from the string set {ab, cde, cfh}.

Oozie libraries: The value oxh:oozie expands automatically to
/user/{oozie,user}/share/lib/{oxh,*/oxh*}, which is a common search path for
supported Oozie versions. The user is the current user name. However, the Oracle
XQuery for Hadoop Oozie action ignores this setting when running queries, because
all libraries are preinstalled in HDFS.

oracle.hadoop.xquery.output
Type: String

Default Value: /tmp/oxh-user_name/output. The user_name is the name of the user
running Oracle XQuery for Hadoop.

Description: Sets the output directory for the query. This property is equivalent to the
-output command line option. See "Oracle XQuery for Hadoop Options" on page 4-13.

oracle.hadoop.xquery.scratch
Type: String

Default Value: /tmp/oxh-user_name/scratch. The user_name is the name of the user
running Oracle XQuery for Hadoop.

Description: Sets the HDFS temp directory for Oracle XQuery for Hadoop to store
temporary files.

oracle.hadoop.xquery.timezone
Type: String

Default Value: Client system time zone

Description: The XQuery implicit time zone, which is used in a comparison or
arithmetic operation when a date, time, or datetime value does not have a time zone.
The value must be in the format described by the Java TimeZone class. See the
TimeZone class description in Java 7 API Specification at

http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html

oracle.hadoop.xquery.skiperrors
Type: Boolean

Default Value: false

Description: Set to true to turn on error recovery, or set to false to stop processing
when an error occurs. This property is equivalent to the -skiperrors command line
option.

oracle.hadoop.xquery.skiperrors.counters
Type: Boolean

Default Value: true

Description: Set to true to group errors by error code, or set to false to report all
errors in a single counter.

http://docs.oracle.com/javase/7/docs/api/java/util/TimeZone.html

Third-Party Licenses for Bundled Software

4-20 Oracle Big Data Connectors User's Guide

oracle.hadoop.xquery.skiperrors.max
Type: Integer

Default Value: Unlimited

Description: Sets the maximum number of errors that a single MapReduce task can
recover from.

oracle.hadoop.xquery.skiperrors.log.max
Type: Integer

Default Value: 20

Description: Sets the maximum number of errors that a single MapReduce task logs.

log4j.logger.oracle.hadoop.xquery
Type: String

Default Value: Not defined

Description: Configures the log4j logger for each task with the specified threshold
level. Set the property to one of these values: OFF, FATAL, ERROR, WARN, INFO, DEBUG, or
ALL. If this property is not set, then Oracle XQuery for Hadoop does not configure
log4j.

Third-Party Licenses for Bundled Software
Oracle XQuery for Hadoop installs the following third-party products:

■ ANTLR 3.2

■ Apache Ant 1.7.1

■ Apache Xerces 2.9.1

■ Apache XMLBeans 2.3, 2.5

■ Jackson 1.8.8

■ Woodstox XML Parser 4.2.0

Unless otherwise specifically noted, or as required under the terms of the third
party license (e.g., LGPL), the licenses and statements herein, including all
statements regarding Apache-licensed code, are intended as notices only.

Apache Licensed Code
The following is included as a notice in compliance with the terms of the Apache 2.0
License, and applies to all programs licensed under the Apache 2.0 license:

You may not use the identified files except in compliance with the Apache License,
Version 2.0 (the "License.")

You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

A copy of the license is also reproduced in "Apache Licensed Code" on page 3-42.

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under
the License.

Third-Party Licenses for Bundled Software

Using Oracle XQuery for Hadoop 4-21

ANTLR 3.2
[The BSD License]

Copyright © 2010 Terence Parr

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

■ Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

■ Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

■ Neither the name of the author nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Apache Ant 1.7.1
Copyright 1999-2008 The Apache Software Foundation

This product includes software developed by The Apache Software Foundation
(http://www.apache.org).

This product includes also software developed by:

■ the W3C consortium (http://www.w3c.org)

■ the SAX project (http://www.saxproject.org)

The <sync> task is based on code Copyright (c) 2002, Landmark Graphics Corp that
has been kindly donated to the Apache Software Foundation.

Portions of this software were originally based on the following:

■ software copyright (c) 1999, IBM Corporation, http://www.ibm.com.

■ software copyright (c) 1999, Sun Microsystems, http://www.sun.com.

■ voluntary contributions made by Paul Eng on behalf of the Apache Software
Foundation that were originally developed at iClick, Inc., software copyright (c)
1999

Third-Party Licenses for Bundled Software

4-22 Oracle Big Data Connectors User's Guide

W3C® SOFTWARE NOTICE AND LICENSE
http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

This work (and included software, documentation such as READMEs, or other related
items) is being provided by the copyright holders under the following license. By
obtaining, using and/or copying this work, you (the licensee) agree that you have
read, understood, and will comply with the following terms and conditions.

Permission to copy, modify, and distribute this software and its documentation, with
or without modification, for any purpose and without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the software and
documentation or portions thereof, including modifications:

1. The full text of this NOTICE in a location viewable to users of the redistributed or
derivative work.

2. Any pre-existing intellectual property disclaimers, notices, or terms and
conditions. If none exist, the W3C Software Short Notice should be included
(hypertext is preferred, text is permitted) within the body of any redistributed or
derivative code.

3. Notice of any changes or modifications to the files, including the date changes
were made. (We recommend you provide URIs to the location from which the
code is derived.)

THIS SOFTWARE AND DOCUMENTATION IS PROVIDED "AS IS," AND
COPYRIGHT HOLDERS MAKE NO REPRESENTATIONS OR WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT
THE USE OF THE SOFTWARE OR DOCUMENTATION WILL NOT INFRINGE ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

COPYRIGHT HOLDERS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
SOFTWARE OR DOCUMENTATION.

The name and trademarks of copyright holders may NOT be used in advertising or
publicity pertaining to the software without specific, written prior permission. Title to
copyright in this software and any associated documentation will at all times remain
with copyright holders.

This formulation of W3C's notice and license became active on December 31 2002. This
version removes the copyright ownership notice such that this license can be used
with materials other than those owned by the W3C, reflects that ERCIM is now a host
of the W3C, includes references to this specific dated version of the license, and
removes the ambiguous grant of "use". Otherwise, this version is the same as the
previous version and is written so as to preserve the Free Software Foundation's
assessment of GPL compatibility and OSI's certification under the Open Source
Definition. Please see our Copyright FAQ for common questions about using materials
from our site, including specific terms and conditions for packages like libwww,
Amaya, and Jigsaw. Other questions about this notice can be directed to
site-policy@w3.org.

Joseph Reagle <site-policy@w3.org>

This license came from: http://www.megginson.com/SAX/copying.html
However please note future versions of SAX may be covered under
http://saxproject.org/?selected=pd

SAX2 is Free!

Third-Party Licenses for Bundled Software

Using Oracle XQuery for Hadoop 4-23

I hereby abandon any property rights to SAX 2.0 (the Simple API for XML), and
release all of the SAX 2.0 source code, compiled code, and documentation contained in
this distribution into the Public Domain. SAX comes with NO WARRANTY or
guarantee of fitness for any purpose.

David Megginson, david@megginson.com

2000-05-05

Apache Xerces 2.9.1
Xerces Copyright © 1999-2002 The Apache Software Foundation. All rights reserved.
Licensed under the Apache 1.1 License Agreement.

The names "Xerces" and "Apache Software Foundation must not be used to endorse or
promote products derived from this software or be used in a product name without
prior written permission. For written permission, please contact apache@apache.org
email address.

This software consists of voluntary contributions made by many individuals on behalf
of the Apache Software Foundation. For more information on the Apache Software
Foundation, please see http://www.apache.org website.

The Apache Software License, Version 1.1
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list
of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

3. The end-user documentation included with the redistribution, if any, must include
the acknowledgements set forth above in connection with the software (“This
product includes software developed by the ….) Alternately, this
acknowledgement may appear in the software itself, if and wherever such
third-party acknowledgements normally appear.

4. The names identified above with the specific software must not be used to endorse
or promote products derived from this software without prior written permission.
For written permission, please contact apache@apache.org email address.

5. Products derived from this software may not be called "Apache" nor may
"Apache" appear in their names without prior written permission of the Apache
Group.

THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION
OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Third-Party Licenses for Bundled Software

4-24 Oracle Big Data Connectors User's Guide

Apache XMLBeans 2.3, 2.5
This product includes software developed by The Apache Software Foundation
(http://www.apache.org/).

Portions of this software were originally based on the following:

■ software copyright (c) 2000-2003, BEA Systems, <http://www.bea.com/>.

Aside from contributions to the Apache XMLBeans project, this software also includes:

■ one or more source files from the Apache Xerces-J and Apache Axis products,
Copyright (c) 1999-2003 Apache Software Foundation

■ W3C XML Schema documents Copyright 2001-2003 (c) World Wide Web
Consortium (Massachusetts Institute of Technology, European Research
Consortium for Informatics and Mathematics, Keio University)

■ resolver.jar from Apache Xml Commons project, Copyright (c) 2001-2003 Apache
Software Foundation

■ Piccolo XML Parser for Java from http://piccolo.sourceforge.net/, Copyright
2002 Yuval Oren under the terms of the Apache Software License 2.0

■ JSR-173 Streaming API for XML from
http://sourceforge.net/projects/xmlpullparser/, Copyright 2005 BEA under
the terms of the Apache Software License 2.0

Jackson 1.8.8
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under
the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.

Woodstox XML Parser 4.2.0
This copy of Woodstox XML processor is licensed under the Apache (Software)
License, version 2.0 ("the License"). See the License for details about distribution rights,
and the specific rights regarding derivate works.

You may obtain a copy of the License at:

http://www.apache.org/licenses/

A copy is also included with both the downloadable source code package and jar that
contains class bytecodes, as file "ASL 2.0". In both cases, that file should be located
next to this file: in source distribution the location should be "release-notes/asl"; and in
jar "META-INF/"

This product currently only contains code developed by authors of specific
components, as identified by the source code files.

Since product implements StAX API, it has dependencies to StAX API classes.

For additional credits (generally to people who reported problems) see CREDITS file.

5

Oracle XQuery for Hadoop Reference 5-1

5Oracle XQuery for Hadoop Reference

This chapter describes the adapters available in Oracle XQuery for Hadoop:

■ Avro File Adapter

■ JSON File Adapter

■ Oracle Database Adapter

■ Oracle NoSQL Database Adapter

■ Sequence File Adapter

■ Solr Adapter

■ Text File Adapter

■ Tika File Adapter

■ XML File Adapter

■ Serialization Annotations

This chapter also describes several other library modules:

■ Hadoop Module

■ Utility Module

Avro File Adapter

5-2 Oracle Big Data Connectors User's Guide

Avro File Adapter

The Avro file adapter provides functions to read and write Avro container files in
HDFS. It is described in the following topics:

■ Built-in Functions for Reading Avro Files

■ Custom Functions for Reading Avro Container Files

■ Custom Functions for Writing Avro Files

■ Examples of Avro File Adapter Functions

■ About Converting Values Between Avro and XML

Avro File Adapter

Oracle XQuery for Hadoop Reference 5-3

Built-in Functions for Reading Avro Files

To use the built-in functions in your query, you must import the Avro file module as
follows:

import module "oxh:avro";

The Avro file module contains the following functions:

■ avro:collection-avroxml

■ avro:get

There are no built-in functions for writing Avro container files. To write Avro files, you
must use a custom function that specifies the Avro writer schema.

avro:collection-avroxml
Accesses a collection of Avro files in HDFS. The files might be split up and processed
in parallel by multiple tasks. The function returns an XML element for each object. See
"About Converting Values Between Avro and XML" on page 5-11.

Signature
declare %avro:collection("avroxml") function
 avro:collection-avroxml($uris as xs:string*) as element()* external;

Parameters
$uris: The Avro file URIs

Returns
One XML element for each Avro object.

avro:get
Retrieves an entry from an Avro map modeled as XML

If you omit the $map parameter, then the behavior is identical to calling the
two-argument function and using the context item for $map.

Signature
avro:get($key as xs:string?, $map as node()?) as element(oxh:entry)?

avro:get($key as xs:string?) as element(oxh:entry)?

Returns
The value of this XPath expression:

$map/oxh:entry[@key eq $key]

Example
These function calls are equivalent:

$var/avro:get("key")

avro:get("key", $var)

$var/oxh:entry[@key eq "key"]

Built-in Functions for Reading Avro Files

5-4 Oracle Big Data Connectors User's Guide

In this example, $var is an Avro map modeled as XML. See "Reading Maps" on
page 5-12.

Avro File Adapter

Oracle XQuery for Hadoop Reference 5-5

Custom Functions for Reading Avro Container Files

You can use the following annotations to define functions that read collections of Avro
container files in HDFS. These annotations provide additional functionality that is not
available using the built-in functions.

5Signature
Custom functions for reading Avro files must have the following signature:

declare %avro:collection("avroxml") [additional annotations]
 function local:myFunctionName($uris as xs:string*) as element()* external;

5Annotations

%avro:collection("avroxml")
Declares the avroxml collection function. Required.

A collection function accesses Avro files in HDFS. The files might be split up and
processed in parallel by multiple tasks. The function returns an XML element for each
object. See "About Converting Values Between Avro and XML" on page 5-11.

%avro:schema("avro-schema")
Provides the Avro reader schema as the value of the annotation. Optional.

The objects in the file are mapped to the reader schema when it is specified. For
example:

%avro:schema('
 {
 "type": "record",
 "name": "Person",
 "fields" : [
 {"name": "full_name", "type": "string"},
 {"name": "age", "type": ["int", "null"] }
]
 }
')

You cannot combine this annotation with %avro:schema-file or %avro:schema-kv.

%avro:schema-file("avro-schema-uri")
Like %avro:schema, but the annotation value is a file URI that contains the Avro reader
schema. Relative URIs are resolved against the current working directory of the client's
local file system. Optional.

For example, %avro:schema-file("schemas/person.avsc").

You cannot combine this annotation with %avro:schema or %avro:schema-kv.

%avro:schema-kv("schema-name")
Like %avro:schema, but the annotation value is a fully qualified record name. The
record schema is retrieved from the Oracle NoSQL Database catalog. Optional.

For example, %avro:schema-kv("org.example.PersonRecord").

See Also: "Schema Resolution" in the Apache Avro Specification at

http://avro.apache.org/docs/current/spec.html#Schema+Resolut
ion

http://avro.apache.org/docs/current/spec.html#Schema+Resolution
http://avro.apache.org/docs/current/spec.html#Schema+Resolution

Custom Functions for Reading Avro Container Files

5-6 Oracle Big Data Connectors User's Guide

You must specify the connection parameters to Oracle NoSQL Database when you use
this annotation. See "Oracle NoSQL Database Adapter Configuration Properties" on
page 5-56.

You cannot combine this annotation with %avro:schema or %avro:schema-file.

%avro:split-max("split-size")
Specifies the maximum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-min, min($split-max, $block-size)). Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

%avro:split-max(1024)
%avro:split-max("1024")
%avro:split-max("1K")

%avro:split-min("split-size")
Specifies the minimum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-min, min($split-max, $block-size)). Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

%avro:split-min(1024)
%avro:split-min("1024")
%avro:split-min("1K")

Avro File Adapter

Oracle XQuery for Hadoop Reference 5-7

Custom Functions for Writing Avro Files

You can use the following annotations to define functions that write Avro files.

5Signature
Custom functions for writing Avro files must have the following signature:

declare %avro:put("avroxml") [additional annotations]
 local:myFunctionName($value as item()) external;

5Annotations

%avro:put("avroxml")
Declares the avroxml put function. Required.

An Avro schema must be specified using one of the following annotations:

■ %avro:schema

■ %avro:schema-file

■ %avro:schema-kv

The input XML value is converted to an instance of the schema. See "Writing XML as
Avro" on page 5-15.

%avro:schema("avro-schema")
Specifies the schema of the files. For example:

%avro:schema('
 {
 "type": "record",
 "name": "Person",
 "fields" : [
 {"name": "full_name", "type": "string"},
 {"name": "age", "type": ["int", "null"] }
]
 }
')

You cannot combine this annotation with %avro:schema-file or %avro:schema-kv.

%avro:schema-file("avro-schema-uri")
Like %avro:schema, but the annotation value is a file URI that contains the Avro reader
schema. Relative URIs are resolved against the current working directory of the client's
local file system.

For example: %avro:schema-file("schemas/person.avsc")

You cannot combine this annotation with %avro:schema or %avro:schema-kv.

%avro:schema-kv("schema-name")
Like %avro:schema, but the annotation value is a fully qualified record name. The
record schema is retrieved from the Oracle NoSQL Database catalog.

For example: %avro:schema-kv("org.example.PersonRecord")

You must specify the connection parameters to Oracle NoSQL Database when you use
this annotation. See "Oracle NoSQL Database Adapter Configuration Properties" on
page 5-56.

Custom Functions for Writing Avro Files

5-8 Oracle Big Data Connectors User's Guide

You cannot combine this annotation with %avro:schema or %avro:schema-file.

%avro:compress("method", [level]?)
Specifies the compression format used on the output.

The codec is one of the following string literal values:

■ deflate: The level controls the trade-off between speed and compression. Valid
values are 1 to 9, where 1 is the fastest and 9 is the most compressed.

■ snappy: This algorithm is designed for high speed and moderate compression.

The default is no compression.

The level is an integer value. It is optional and only supported when codec is deflate.

For example:

%avro:compress("snappy")
%avro:compress("deflate")
%avro:compress("deflate", 3)

%avro:file("name")
Specifies the output file name prefix. The default prefix is part.

Avro File Adapter

Oracle XQuery for Hadoop Reference 5-9

Examples of Avro File Adapter Functions

These examples use the following text file in HDFS:

mydata/ages.txt

john,45
kelly,36
laura,
mike,27

Example 1 Converting a Text File to Avro
The following query converts the file into compressed Avro container files:

import module "oxh:text";

declare
 %avro:put("avroxml")
 %avro:compress("snappy")
 %avro:schema('
 {
 "type": "record",
 "name": "AgeRec",
 "fields" : [
 {"name": "user", "type": "string"},
 {"name": "age", "type": ["int", "null"] }
]
 }
 ')
function local:put($arg as item()) external;

for $line in text:collection("mydata/ages.txt")
let $split := fn:tokenize($line, ",")
return
 local:put(
 <rec>
 <user>{$split[1]}</user>
 {
 if ($split[2] castable as xs:int) then
 <age>{$split[2]}</age>
 else
 ()
 }
 </rec>
)

The query generates an Avro file with the following records, represented here as JSON:

{"user":"john","age":{"int":45}}
{"user":"kelly","age":{"int":36}}
{"user":"laura","age":null}
{"user":"mike","age":{"int":27}}

Example 2 Querying Records in Avro Container Files
The next query selects records in which the age is either null or greater than 30, from
the myoutput directory. The query in Example 1 generated the records.

import module "oxh:text";
import module "oxh:avro";

Examples of Avro File Adapter Functions

5-10 Oracle Big Data Connectors User's Guide

for $rec in avro:collection-avroxml("myoutput/part*.avro")
where $rec/age/nilled() or $rec/age gt 30
return
 text:put($rec/user)

This query creates files that contain the following lines:

john
kelly
laura

Avro File Adapter

Oracle XQuery for Hadoop Reference 5-11

About Converting Values Between Avro and XML

This section describes how Oracle XQuery for Hadoop converts data between Avro
and XML:

■ Reading Avro as XML

■ Writing XML as Avro

Reading Avro as XML
Both the Avro file adapter and the Oracle NoSQL Database adapter have an avroxml
method, which you can use with the collection functions to read Avro records as XML.
After the Avro is converted to XML, you can query and transform the data using
XQuery.

The following topics describe how Oracle XQuery for Hadoop reads Avro:

■ Reading Records

■ Reading Maps

■ Reading Arrays

■ Reading Unions

■ Reading Primitives

Reading Records

An Avro record is converted to an <oxh:item> element with one child element for each
field in the record.

For example, consider the following Avro schema:

{
 "type": "record",
 "name": "Person",
 "fields" : [
 {"name": "full_name", "type": "string"},
 {"name": "age", "type": ["int", "null"] }
]
}

This is an instance of the record modeled as XML:

<oxh:item>
 <full_name>John Doe</full_name>
 <age>46</age>
</oxh:item>

Converting Avro records to XML enables XQuery to query them. The next example
queries an Avro container file named person.avro, which contains Person records. The
query converts the records to a CSV text file in which each line contains the full_name
and age values:

import module "oxh:avro";
import module "oxh:text";

for $x in avro:collection-avroxml("person.avro")
return
 text:put($x/full_name || "," || $x/age)

About Converting Values Between Avro and XML

5-12 Oracle Big Data Connectors User's Guide

Null values are converted to nilled elements. A nilled element has an xsi:nil
attribute set to true; it is always empty. You can use the XQuery fn:nilled function to
test if a record field is null. For example, the following query writes the name of
Person records that have a null value for age:

import module "oxh:avro";
import module "oxh:text";

for $x in avro:collection-avroxml("person.avro")
where $x/age/nilled()
return
 text:put($x/full_name)

For nested records, the fields of the inner schema become child elements of the
element that corresponds to the field in the outer schema. For example, this schema
has a nested record:

{
 "type": "record",
 "name": "PersonAddress",
 "fields" : [
 {"name": "full_name", "type": "string"},
 {"name": "address", "type":
 { "type" : "record",
 "name" : "Address",
 "fields" : [
 { "name" : "street", "type" : "string" },
 { "name" : "city", "type" : "string" }
]
 }
 }
]
}

This is an instance of the record as XML:

<oxh:item>
 <full_name>John Doe</full_name>
 <address>
 <street>123 First St.</street>
 <city>New York</city>
 </address>
</oxh:item>

The following example queries an Avro container file named people-address.avro that
contains PersonAddress records, and writes the names of the people that live in New
York to a text file:

import module "oxh:avro";
import module "oxh:text";

for $person in avro:collection-avroxml("examples/person-address.avro")
where $person/address/city eq "New York"
return
 text:put($person/full_name)

Reading Maps

Avro map values are converted to an element that contains one child <oxh:entry>
element for each entry in the map. For example, consider the following schema:

{

Avro File Adapter

Oracle XQuery for Hadoop Reference 5-13

 "type": "record",
 "name": "PersonProperties",
 "fields" : [
 {"name": "full_name", "type": "string"},
 {"name": "properties", "type":
 {"type": "map", "values": "string"}
 }
]
}

This is an instance of the schema as XML:

<oxh:item>
 <full_name>John Doe</full_name>
 <properties>
 <oxh:entry key="employer">Example Inc</oxh:entry>
 <oxh:entry key="hair color">brown</oxh:entry>
 <oxh:entry key="favorite author">George RR Martin</oxh:entry>
 </properties>
</oxh:item>

The following example queries a file named person-properties.avro that contains
PersonAddress records, and writes the names of the people that are employed by
Example Inc. The query shows how regular XPath expressions can retrieve map
entries. Moreover, you can use the avro:get function as a shortcut to retrieve map
entries.

import module "oxh:avro";
import module "oxh:text";

for $person in avro:collection-avroxml("person-properties.avro")
where $person/properties/oxh:entry[@key eq "employer"] eq "Example Inc"
return
 text:put($person/full_name)

The following query uses the avro:get function to retrieve the employer entry. It is
equivalent to the previous query.

import module "oxh:avro";
import module "oxh:text";

for $person in avro:collection-avroxml("person-properties.avro")
where $person/properties/avro:get("employer") eq "Example Inc"
return
 text:put($person/full_name)

You can use XQuery fn:nilled function to test for null values. This example returns
true if the map entry is null:

$var/avro:get("key")/nilled()

Reading Arrays

Oracle XQuery for Hadoop converts Avro array values to an element that contains a
child <oxh:item> element for each item in the array. For example, consider the
following schema:

{
 "type": "record",
 "name": "PersonScores",
 "fields" : [
 {"name": "full_name", "type": "string"},

About Converting Values Between Avro and XML

5-14 Oracle Big Data Connectors User's Guide

 {"name": "scores", "type":
 {"type": "array", "items": "int"}
 }
]
}

This is an instance of the schema as XML:

<oxh:item>
 <full_name>John Doe</full_name>
 <scores>
 <oxh:item>128</oxh:item>
 <oxh:item>151</oxh:item>
 <oxh:item>110</oxh:item>
 </scores>
</oxh:item>

The following example queries a file named person-scores.avro that contains
PersonScores records, and writes the sum and count of scores for each person:

import module "oxh:avro";
import module "oxh:text";

for $person in avro:collection-avroxml("person-scores.avro")
let $scores := $person/scores/*
return
 text:put($person/full_name || "," || sum($scores) || "," || count($scores))

You can access a specific element of an array by using a numeric XPath predicate. For
example, this path expression selects the second score. XPath indexing starts at 1 (not
0).

$person/scores/oxh:item[2]

Reading Unions

Oracle XQuery for Hadoop converts an instance of an Avro union type based on the
actual member type of the value. The name of the member type is added as an XML
avro:type attribute to the enclosing element, which ensures that queries can
distinguish between instances of different member types. However, the attribute is not
added for trivial unions where there are only two member types and one of them is
null.

For example, consider the following union of two records:

[
 {
 "type": "record",
 "name": "Person1",
 "fields" : [
 {"name": "full_name", "type": "string"}
]
 }
 ,
 {
 "type": "record",
 "name": "Person2",
 "fields" : [
 {"name": "fname", "type": "string"}
]
 }
]

Avro File Adapter

Oracle XQuery for Hadoop Reference 5-15

This is an instance of the schema as XML:

<oxh:item avro:type="Person2">
 <fname>John Doe</fname>
</oxh:item>

The following example queries a file named person-union.avro that contains instances
of the previous union schema, and writes the names of the people from both record
types to a text file:

import module "oxh:avro";
import module "oxh:text";

for $person in avro:collection-avroxml("examples/person-union.avro")
return
 if ($person/@avro:type eq "Person1") then
 text:put($person/full_name)
 else if ($person/@avro:type eq "Person2") then
 text:put($person/fname)
 else
 error(xs:QName("UNEXPECTED"), "Unexpected record type:" ||
$person/@avro:type)

Reading Primitives

Table 5–1 shows how Oracle XQuery for Hadoop maps Avro primitive types to
XQuery atomic types.

Avro null values are mapped to empty nilled elements. To distinguish between a null
string value and an empty string value, use the XQuery nilled function. This path
expression only returns true if the field value is null:

$record/field/fn:nilled()

Avro fixed values are mapped to xs:hexBinary, and enums are mapped to xs:string.

Writing XML as Avro
Both the Avro file adapter and the Oracle NoSQL Database adapter have an avroxml
method, which you can use with the put functions to write XML as Avro. The
following topics describe how the XML is converted to an Avro instance:

■ Writing Records

■ Writing Maps

Table 5–1 Mapping Avro Primitive Types to XQuery Atomic Types

Avro XQuery

boolean xs:boolean

int xs:int

long xs:long

float xs:float

double xs:double

bytes xs:hexBinary

string xs:string

About Converting Values Between Avro and XML

5-16 Oracle Big Data Connectors User's Guide

■ Writing Arrays

■ Writing Unions

■ Writing Primitives

Writing Records

Oracle XQuery for Hadoop maps the XML to an Avro record schema by matching the
child element names to the field names of the record. For example, consider the
following Avro schema:

{
 "type": "record",
 "name": "Person",
 "fields" : [
 {"name": "full_name", "type": "string"},
 {"name": "age", "type": ["int", "null"] }
]
}

You can use the following XML element to write an instance of this record in which the
full_name field is John Doe and the age field is 46. The name of the root element
(Person) is inconsequential. Only the names of the child elements are used to map to
the Avro record fields (full_name and age).

<person>
 <full_name>John Doe</full_name>
 <age>46</age>
</person>

The next example uses the following CSV file named people.csv:

John Doe,46
Jane Doe,37
 .
 .
 .

This query converts values from the CSV file to Avro Person records:

import module "oxh:avro";
import module "oxh:text";

declare
 %avro:put("avroxml")
 %avro:schema('
 {
 "type": "record",
 "name": "Person",
 "fields" : [
 {"name": "full_name", "type": "string"},
 {"name": "age", "type": ["int", "null"] }
]
 }
 ')
function local:put-person($person as element()) external;

for $line in text:collection("people.csv")
let $split := tokenize($line, ",")
return
 local:put-person(
 <person>

Avro File Adapter

Oracle XQuery for Hadoop Reference 5-17

 <full_name>{$split[1]}</full_name>
 <age>{$split[2]}</age>
 </person>
)

For null values, you can omit the element or set the xsi:nil="true" attribute. For
example, this modified query sets age to null when the value is not numeric:

 .
 .
 .
for $line in text:collection("people.csv")
let $split := tokenize($line, ",")
return
 local:put-person(
 <person>
 <full_name>{$split[1]}</full_name>
 {
 if ($split[2] castable as xs:int) then
 <age>{$split[2]}</age>
 else
 ()
 }
 </person>
)

In the case of nested records, the values are obtained from nested elements. The next
example uses the following schema:

{
"type": "record",
"name": "PersonAddress",
"fields" : [
 {"name": "full_name", "type": "string"},
 {"name": "address", "type":
 { "type" : "record",
 "name" : "Address",
 "fields" : [
 { "name" : "street", "type" : "string" },
 { "name" : "city", "type" : "string" }
]
 }
 }
]
}

You can use following XML to write an instance of this record:

<person>
 <full_name>John Doe</full_name>
 <address>
 <street>123 First St.</street>
 <city>New York</city>
 </address>
</person>

Writing Maps

Oracle XQuery for Hadoop converts XML to an Avro map with one map entry for each
<oxh:entry> child element. For example, consider the following schema:

About Converting Values Between Avro and XML

5-18 Oracle Big Data Connectors User's Guide

{
 "type": "record",
 "name": "PersonProperties",
 "fields" : [
 {"name": "full_name", "type": "string"},
 {"name": "properties", "type":
 {"type": "map", "values": "string"}
 }
]
}

You can use the following XML element to write an instance of this schema in which
the full_name field is John Doe, and the properties field is set to a map with three
entries:

<person>
 <full_name>John Doe</full_name>
 <properties>
 <oxh:entry key="hair color">brown</oxh:entry>
 <oxh:entry key="favorite author">George RR Martin</oxh:entry>
 <oxh:entry key="employer">Example Inc</oxh:entry>
 </properties>
</person>

Writing Arrays

Oracle XQuery for Hadoop converts XML to an Avro array with one item for each
<oxh:item> child element. For example, consider the following schema:

{
 "type": "record",
 "name": "PersonScores",
 "fields" : [
 {"name": "full_name", "type": "string"},
 {"name": "scores", "type":
 {"type": "array", "items": "int"}
 }
]
}

You can use the following XML element to write an instance of this schema in which
the full_name field is John Doe and the scores field is set to [128, 151, 110]:

<person>
 <full_name>John Doe</full_name>
 <scores>
 <oxh:item>128</oxh:item>
 <oxh:item>151</oxh:item>
 <oxh:item>110</oxh:item>
 </scores>
</person>

Writing Unions

When writing an Avro union type, Oracle XQuery for Hadoop bases the selection of a
member type on the value of the avro:type attribute.

This example uses the following schema:

[
 {
 "type": "record",
 "name": "Person1",

Avro File Adapter

Oracle XQuery for Hadoop Reference 5-19

 "fields" : [
 {"name": "full_name", "type": "string"}
]
 }
 ,
 {
 "type": "record",
 "name": "Person2",
 "fields" : [
 {"name": "fname", "type": "string"}
]
 }
]

The following XML is mapped to an instance of the Person1 record:

<person avro:type="Person1">
 <full_name>John Doe</full_name>
</person>

This XML is mapped to an instance of the Person2 record:

<person avro:type="Person2">
 <fname>John Doe</fname>
</person>

The avro:type attribute selects the member type of the union. For trivial unions that
contain a null and one other type, the avro:type attribute is unnecessary. If the
member type cannot be determined, then an error is raised.

Writing Primitives

To map primitive values, Oracle XQuery for Hadoop uses the equivalent data types
shown in Table 5–1 to cast an XML value to the corresponding Avro type. If the value
cannot be converted to the Avro type, then an error is raised.

This example uses the following schema:

{
 "type": "record",
 "name": "Person",
 "fields" : [
 {"name": "full_name", "type": "string"},
 {"name": "age", "type": ["int", "null"] }
]
}

Attempting to map the following XML to an instance of this schema raises an error,
because the string value apple cannot be converted to an int:

<person>
 <full_name>John Doe</full_name>
 <age>apple</age>
</person>

JSON File Adapter

5-20 Oracle Big Data Connectors User's Guide

JSON File Adapter

The JSON file adapter provides access to JSON files stored in HDFS. It also contains
functions for working with JSON data embedded in other file formats. For example,
you can query JSON that is stored as lines in a large text file by using
json:parse-as-xml with the text:collection function.

Processing a single JSON file in parallel is not currently supported. A set of JSON files
can be processes in parallel, with sequential processing of each file.

The JSON module is described in the following topics:

■ Built-in Functions for Reading JSON

■ Custom Functions for Reading JSON Files

■ Examples of JSON Functions

■ JSON File Adapter Configuration Properties

■ About Converting JSON Data Formats to XML

JSON File Adapter

Oracle XQuery for Hadoop Reference 5-21

Built-in Functions for Reading JSON

To use the built-in functions in your query, you must import the JSON file adapter as
follows:

import module "oxh:json";

The JSON module contains the following functions:

■ json:collection-jsonxml

■ json:parse-as-xml

■ json:get

json:collection-jsonxml
Accesses a collection of JSON files in HDFS. Multiple files can be processed
concurrently, but each individual file is parsed by a single task.

The JSON file adapter automatically decompresses files compressed with a
Hadoop-supported compression codec.

Signature
json:collection-jsonxml($uris as xs:string*) as element()* external;

Parameters
$uris: The JSON file URIs

Returns
XML elements that model the JSON values. See "About Converting JSON Data
Formats to XML" on page 5-28.

json:parse-as-xml
Parses a JSON value as XML.

Signature
json:parse-as-xml($arg as xs:string?) as element(*)?

Parameters
$arg: Can be the empty sequence.

Returns
An XML element that models the JSON value. An empty sequence if $arg is an empty
sequence. See "About Converting JSON Data Formats to XML" on page 5-28.

json:get
Retrieves an entry from a JSON object modeled as XML. See "About Converting JSON
Data Formats to XML" on page 5-28.

Signature
json:get($key as xs:string?, $obj as node()?) as element(oxh:entry)?

json:get($key as xs:string?) as element(oxh:entry)?

Built-in Functions for Reading JSON

5-22 Oracle Big Data Connectors User's Guide

Parameters
$key: The JSON data key

$obj: The JSON object value

Returns
The value of the following XPath expression:

$obj/oxh:entry[@key eq $key]

If $input not present, then the behavior is identical to calling the two-argument
function using the context item for $obj. See the Notes.

Notes
These function calls are equivalent:

$var/json:get("key")

json:get("key", $var)

$var/oxh:entry[@key eq "key"]

$var is a JSON object modeled as XML. See "Reading Maps" on page 5-12.

JSON File Adapter

Oracle XQuery for Hadoop Reference 5-23

Custom Functions for Reading JSON Files

You can use the following annotations to define functions that read collections of JSON
files in HDFS. These annotations provide additional functionality that is not available
using the built-in functions.

5Signature
Custom functions for reading JSON files must have the following signature:

declare %json:collection("jsonxml") [additional annotations]
 function local:myFunctionName($uris as xs:string*) as element()* external;

5Annotations

%json:collection("jsonxml")
Declares the collection function. The annotation parameter must be jsonxml.

%output:encoding("charset")
Identifies the text encoding of the input files.

The valid encodings are those supported by the JVM. If this annotation is omitted,
then the encoding is automatically detected from the JSON file as UTF-8, UTF-16
big-endian serialization (BE) or little-endian serialization (LE), or UTF-32 (BE or LE).

For better performance, omit the encoding annotation if the actual file encoding is
specified by JSON Request for Comment 4627, Section 3 "Encoding," on the Internet
Engineering Task Force (IETF) website at

http://www.ietf.org/rfc/rfc4627.txt

5Parameters

$uris as xs:string*
Lists the JSON file URIs. Required.

5Returns
A collection of XML elements. Each element models the corresponding JSON value.
See "About Converting JSON Data Formats to XML" on page 5-28.

Examples of JSON Functions

5-24 Oracle Big Data Connectors User's Guide

Examples of JSON Functions

Example 1 uses the following JSON text files stored in HDFS:

mydata/users1.json
[
{ "user" : "john", "full name" : "John Doe", "age" : 45 },
{ "user" : "kelly", "full name" : "Kelly Johnson", "age" : 32 }
]

mydata/users2.json
[
{ "user" : "laura", "full name" : "Laura Smith", "age" : null },
{ "user" : "phil", "full name" : "Phil Johnson", "age" : 27 }
]

The remaining examples query the following text file in HDFS:

mydata/users-json.txt

{ "user" : "john", "full name" : "John Doe", "age" : 45 }
{ "user" : "kelly", "full name" : "Kelly Johnson", "age" : 32 }
{ "user" : "laura", "full name" : "Laura Smith", "age" : null }
{ "user" : "phil", "full name" : "Phil Johnson", "age" : 27 }

Example 1
The following query selects names of users whose last name is Johnson from
users1.json and users2.json:

import module "oxh:text";
import module "oxh:json";

for $user in json:collection-jsonxml("mydata/users*.json")/oxh:item
let $fullname := $user/json:get("full name")
where tokenize($fullname, "\s+")[2] eq "Johnson"
return
 text:put-text($fullname)

This query generates text files that contain the following lines:

Phil Johnson
Kelly Johnson

Example 2
The following query selects the names of users that are older than 30 from
users-json.txt:

import module "oxh:text";
import module "oxh:json";

for $line in text:collection("mydata/users-json.txt")
let $user := json:parse-as-xml($line)
where $user/json:get("age") gt 30
return
 text:put($user/json:get("full name"))

This query generates text files that contain the following lines:

John Doe
Kelly Johnson

JSON File Adapter

Oracle XQuery for Hadoop Reference 5-25

Example 3
The next query selects the names of employees that have a null value for age from
users-json.txt:

import module "oxh:text";
import module "oxh:json";

for $line in text:collection("mydata/users-json.txt")
let $user := json:parse-as-xml($line)
where $user/json:get("age")/nilled()
return
 text:put($user/json:get("full name"))

This query generates a text file that contains the following line:

Laura Smith

JSON File Adapter Configuration Properties

5-26 Oracle Big Data Connectors User's Guide

JSON File Adapter Configuration Properties

Oracle XQuery for Hadoop uses the generic options for specifying configuration
properties in the hadoop command. You can use the -conf option to identify
configuration files, and the -D option to specify individual properties. See "Running
Queries" on page 4-13.

The following configuration properties are equivalent to the Jackson parser options
with the same names. You can enter the option name in either upper or lower case. For
example, oracle.hadoop.xquery.json.parser.ALLOW_BACKSLASH_ESCAPING_ANY_
CHARACTER and oracle.hadoop.xquery.json.parser.allow_backslash_escaping_
any_character are equal.

oracle.hadoop.xquery.json.parser.ALLOW_BACKSLASH_ESCAPING_ANY_
CHARACTER
Type: Boolean

Default Value: false

Description: Enables any character to be escaped with a backslash (\). Otherwise, only
the following characters can be escaped: quotation mark("), slash (/), backslash (\),
backspace, form feed (f), new line (n), carriage return (r), horizontal tab (t), and
hexadecimal representations (unnnn)

oracle.hadoop.xquery.json.parser.ALLOW_COMMENTS
Type: Boolean

Default Value: false

Description: Allows Java and C++ comments (/* and //) within the parsed text.

oracle.hadoop.xquery.json.parser.ALLOW_NON_NUMERIC_NUMBERS
Type: Boolean

Default Value: false

Description: Allows Not a Number (NaN) tokens to be parsed as floating number
values.

oracle.hadoop.xquery.json.parser.ALLOW_NUMERIC_LEADING_ZEROS
Type: Boolean

Default Value: false

Description: Allows integral numbers to start with zeroes, such as 00001. The zeros do
not change the value and can be ignored.

oracle.hadoop.xquery.json.parser.ALLOW_SINGLE_QUOTES
Type: Boolean

Default Value: false

Description: Allow single quotes (') to delimit string values.

oracle.hadoop.xquery.json.parser.ALLOW_UNQUOTED_CONTROL_CHARS
Type: Boolean

Default Value: false

Description: Allows JSON strings to contain unquoted control characters (that is,
ASCII characters with a decimal value less than 32, including the tab and line feed).

JSON File Adapter

Oracle XQuery for Hadoop Reference 5-27

oracle.hadoop.xquery.json.parser.ALLOW_UNQUOTED_FIELD_NAMES
Type: Boolean

Default Value: false

Description: Allows unquoted field names, which are allowed by Javascript but not
the JSON specification.

About Converting JSON Data Formats to XML

5-28 Oracle Big Data Connectors User's Guide

About Converting JSON Data Formats to XML

This section describes how JSON data formats are converted to XML. It contains the
following topics:

■ About Converting JSON Objects to XML

■ About Converting JSON Arrays to XML

■ About Converting Other JSON Types

About Converting JSON Objects to XML
JSON objects are similar to Avro maps and are converted to the same XML structure.
See "Reading Maps" on page 5-12.

For example, the following JSON object is converted to an XML element:

{
 "user" : "john",
 "full_name" : "John Doe",
 "age" : 45
}

The object is modeled as the following element:

<oxh:item>
 <oxh:entry key="user">john</oxh:entry>
 <oxh:entry key="full_name">John Doe</oxh:entry>
 <oxh:entry key="age">45</oxh:entry>
</oxh:item>

About Converting JSON Arrays to XML
JSON arrays are similar to Avro arrays and are converted to the same XML structure.
See "Reading Arrays" on page 5-13.

For example, the following JSON array is converted to an XML element:

["red", "blue", "green"]

The array is modeled as the following element:

<oxh:item>
 <oxh:item>red</oxh:item>
 <oxh:item>blue</oxh:item>
 <oxh:item>green</oxh:item>
</oxh:item>

About Converting Other JSON Types
The other JSON values are mapped as shown in Table 5–2.

Table 5–2 JSON Type Conversions

JSON XML

null An empty (nilled) element

true/false xs:boolean

number xs:decimal

string xs:string

Oracle Database Adapter

Oracle XQuery for Hadoop Reference 5-29

Oracle Database Adapter

The Oracle Database adapter provides custom functions for loading data into tables in
Oracle Database.

A custom put function supported by this adapter automatically calls Oracle Loader for
Hadoop at run time, either to load the data immediately or to output it to HDFS. You
can declare and use multiple custom Oracle Database adapter put functions within a
single query. For example, you might load data into different tables or into different
Oracle databases with a single query.

Ensure that Oracle Loader for Hadoop is installed on your system, and that the OLH_
HOME environment variable is set to the installation directory. See Step 3 of "Installing
Oracle XQuery for Hadoop" on page 1-14. Although not required, you might find it
helpful to familiarize yourself with Oracle Loader for Hadoop before using this
adapter.

The Oracle Database adapter is described in the following topics:

■ Custom Functions for Writing to Oracle Database

■ Examples of Oracle Database Adapter Functions

■ Oracle Loader for Hadoop Configuration Properties and Corresponding
%oracle-property Annotations

See Also:

■ "Software Requirements" on page 1-11 for the versions of Oracle
Database that Oracle Loader for Hadoop supports

■ Chapter 3, "Oracle Loader for Hadoop"

Custom Functions for Writing to Oracle Database

5-30 Oracle Big Data Connectors User's Guide

Custom Functions for Writing to Oracle Database

You can use the following annotations to define functions that write to tables in an
Oracle database either directly or by generating binary or text files for subsequent
loading with another utility, such as SQL*Loader.

5Signature
Custom functions for writing to Oracle database tables must have the following
signature:

declare %oracle:put(["jdbc" | "oci" | "text" | "datapump"])
 [%oracle:columns(col1 [, col2...])] [%oracle-property annotations]
 function local:myPut($column1 [as xs:allowed_type_name[?]], [$column2 [as
xs:allowed_type_name[?]], ...]) external;

5Annotations

%oracle:put("output_mode"?)
Declares the put function and the output mode. Required.

The optional output_mode parameter can be one of the following string literal values:

■ jdbc: Writes to an Oracle database table using a JDBC connection. Default.

See "JDBC Output Format" on page 3-18.

■ oci: Writes to an Oracle database table using an Oracle Call Interface (OCI)
connection.

See "Oracle OCI Direct Path Output Format" on page 3-19.

■ datapump: Creates Data Pump files and associated scripts in HDFS for subsequent
loading by another utility.

See "Oracle Data Pump Output Format" on page 3-20.

■ text: Creates delimited text files and associated scripts in HDFS.

See "Delimited Text Output Format" on page 3-19.

For Oracle XQuery for Hadoop to write directly to an Oracle database table using
either JDBC or OCI, all systems involved in processing the query must be able to
connect to the Oracle Database system. See "About the Modes of Operation" on
page 3-2.

%oracle:columns(col1 [, col2...])
Identifies a selection of one or more column names in the target table. The order of
column names corresponds to the order of the function parameters. See "Parameters"
on page 5-31. Optional.

This annotation enables loading a subset of the table columns. If omitted, the put
function attempts to load all columns of the target table.

%oracle-property:property_name (value)
Controls various aspects of connecting to the database and writing data. You can
specify multiple %oracle-property annotations. These annotations correspond to the
Oracle Loader for Hadoop configuration properties. Every %oracle-property
annotation has an equivalent Oracle Loader for Hadoop configuration property.
"Oracle Loader for Hadoop Configuration Properties and Corresponding
%oracle-property Annotations" on page 5-36 explains this relationship in detail.

Oracle Database Adapter

Oracle XQuery for Hadoop Reference 5-31

The %oracle-property annotations are optional. However, the various loading
scenarios require you to specify some of them or their equivalent configuration
properties. For example, to load data into an Oracle database using JDBC or OCI, you
must specify the target table and the connection information.

The following example specifies a target table named VISITS, a user name of db, a
password of password, and the URL connection string:

%oracle-property:targetTable('visits')
%oracle-property:connection.user('db')
%oracle-property:connection.password('password')
%oracle-property:connection.url('jdbc:oracle:thin:@//localhost:1521/orcl.example.c
om')

5Parameters

$column1 [as xs:allowed_type_name[?]], [$column2 [as xs:allowed_type_
name[?]],...]
Enter a parameter for each column in the same order as the Oracle table columns to
load all columns, or use the %oracle:columns annotation to load selected columns.

Because the correlation between parameters and database columns is positional, the
name of the parameter (column1 in the parameter syntax) is not required to match the
name of the database column.

You can omit the explicit as xs:allowed_type_name type declaration for any
parameter. For example, you can declare the parameter corresponding to a NUMBER
column simply as $column1. In this case, the parameter is automatically assigned an
XQuery type of item()*. At run time, the input value is cast to the allowed XQuery
type for the corresponding table column type, as described in Table 5–3. For example,
data values that are mapped to a column with a NUMBER data type are automatically
cast as xs:decimal. An error is raised if the cast fails.

Alternatively, you can specify the type or its subtype for any parameter. In this case,
compile-time type checking is performed. For example, you can declare a parameter
corresponding to a NUMBER column as $column as xs:decimal. You can also declare it
as any subtype of xs:decimal, such as xs:integer.

You can include the ? optional occurrence indicator for each specified parameter type.
This indicator allows the empty sequence to be passed as a parameter value at run
time, so that a null is inserted into the database table. Any occurrence indicator other
than ? raises a compile-time error.

Table 5–3 describes the appropriate mappings of XQuery data types with the
supported Oracle Database data types. In addition to the listed XQuery data types,
you can also use the subtypes, such as xs:integer instead of xs:decimal. Oracle data
types are more restrictive than XQuery data types, and these restrictions are identified
in the table.

Table 5–3 Data Type Mappings Between Oracle Database and XQuery

Database Type XQuery Type

VARCHAR2 xs:string

Limited by the VARCHAR2 maximum size of 4000 bytes.

CHAR xs:string

Limited by the CHAR maximum size of 2000 bytes.

Custom Functions for Writing to Oracle Database

5-32 Oracle Big Data Connectors User's Guide

NVARCHAR2 xs:string

Limited by the NVARCHAR2 maximum size of 4000 bytes.

NCHAR xs:string

Limited by the NCHAR maximum size of 2000 bytes.

DATE xs:dateTime

Limited to the range of January 1, 4712 BC, to December 31,
9999 CE. If a time zone is specified in the xs:dateTime value,
then the time zone information is dropped. Fractional seconds
are also dropped. A time value of 24:00:00 is not valid.

TIMESTAMP xs:dateTime

Limited to the range of January 1, 4712 BC, to December 31,
9999 CE. If a time zone is specified in the xs:dateTime value,
then the time zone information is dropped. Fractional seconds
are limited to a precision of 0 to 9 digits. A time value of
24:00:00 is not valid.

TIMESTAMP W LOCAL TIME
ZONE

xs:dateTime

Limited to the range of January 1, 4712 BC, to December 31,
9999 CE. In the offset from UTC, the time-zone hour field is
limited to -12:00 to 14:00. Fractional seconds are limited to a
precision of 0 to 9 digits.

See "About Session Time Zones" on page 5-33.

TIMESTAMP W TIME ZONE xs:dateTime

Limited to the range of January 1, 4712 BC, to December 31,
9999 CE. In the offset from UTC, the time-zone hour field is
limited to -12:00 to 14:00. Fractional seconds are limited to a
precision of 0 to 9 digits.

See "About Session Time Zones" on page 5-33.

INTERVAL DAY TO SECOND xs:dateTimeDuration

The day and fractional seconds are limited by a precision of 0
to 9 digits each. The hour is limited to a range of 0 to 23, and
minutes and seconds are limited to a range of 0 to 59.

INTERVAL YEAR TO MONTH xs:yearMonthDuration

The year is limited by a precision of 0 to 9 digits, and the
month is limited to a range of 0 to 11.

BINARY_FLOAT xs:float

BINARY_DOUBLE xs:double

NUMBER xs:decimal

Limited by the NUMBER precision of 1 to 38 decimal digits and
scale of -84 to 127 decimal digits.

FLOAT xs:decimal

Limited by the FLOAT precision of 1 to 126 binary digits.

RAW xs:hexBinary

Limit by the RAW maximum size of 2000 bytes.

Table 5–3 (Cont.) Data Type Mappings Between Oracle Database and XQuery

Database Type XQuery Type

Oracle Database Adapter

Oracle XQuery for Hadoop Reference 5-33

About Session Time Zones
If an xs:dateTime value with no time zone is loaded into TIMESTAMP W TIME ZONE or
TIMESTAMP W LOCAL TIME ZONE, then the time zone is set to the value of the
sessionTimeZone parameter, which defaults to the JVM time zone. Using Oracle
XQuery for Hadoop, you can set the sessionTimeZone property, as described in
"Oracle Loader for Hadoop Configuration Properties and Corresponding
%oracle-property Annotations" on page 5-36.

5Notes
With JDBC or OCI output modes, the Oracle Database Adapter loads data directly into
the database table. It also creates a directory with the same name as the custom put
function name, under the query output directory. For example, if your query output
directory is myoutput, and your custom function is myPut, then the myoutput/myPut
directory is created.

For every custom Oracle Database Adapter put function, a separate directory is
created. This directory contains output produced by the Oracle Loader for Hadoop job.
When you use datapump or text output modes, the data files are written to this
directory. The control and SQL scripts for loading the files are written to the _olh
subdirectory, such as myoutput/myPut/_olh.

For descriptions of the generated files, see "Delimited Text Output Format" on
page 3-19 and "Oracle Data Pump Output Format" on page 3-20.

Examples of Oracle Database Adapter Functions

5-34 Oracle Big Data Connectors User's Guide

Examples of Oracle Database Adapter Functions

These examples use the following text files in HDFS. The files contain a log of visits to
different web pages. Each line represents a visit to a web page and contains the time,
user name, and page visited:

mydata/visits1.log

2013-10-28T06:00:00, john, index.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200
2013-10-30T10:00:10, mike, index.html, 401

mydata/visits2.log

2013-10-30T10:00:01, john, index.html, 200
2013-10-30T10:05:20, john, about.html, 200
2013-11-01T08:00:08, laura, index.html, 200
2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200

The examples also use the following file in HDFS, which contains anonymous page
visits:

mydata/anonvisits.log

2011-10-30T10:01:01, index.html, 401
2011-11-04T06:15:40, contact.html, 401

This SQL command creates the VISITS table in the Oracle database:

CREATE TABLE visits (time TIMESTAMP, name VARCHAR2(15), page VARCHAR2(15), code
NUMBER)

Example 1 Loading All Columns
The first query loads all information related to the page visit (time of visit, user name,
page visited, and status code) to the VISITS table. For anonymous access, the user
name is missing, therefore the query specifies () to insert a null into the table. The
target table name, user name, password, and connection URL are specified with
%oracle-property annotations.

The example uses a clear-text user name and password, which is insecure but
acceptable in a development environment. Oracle recommends that you use a wallet
instead for security, especially in a production application. You can configure an
Oracle wallet using either Oracle Loader for Hadoop properties or their equivalent
%oracle-property annotations. The specific properties that you must set are described
in "Providing the Connection Details for Online Database Mode" on page 3-8.

import module "oxh:text";

declare
 %oracle:put
 %oracle-property:targetTable('visits')
 %oracle-property:connection.user('db')
 %oracle-property:connection.password('password')

%oracle-property:connection.url('jdbc:oracle:thin:@//localhost:1521/orcl.exampl
e.com')
function local:myPut($c1, $c2, $c3, $c4) external;

Oracle Database Adapter

Oracle XQuery for Hadoop Reference 5-35

for $line in text:collection("mydata/*visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
return
 if (count($split) > 3) then
 local:myPut($split[1], $split[2], $split[3], $split[4])
 else
 local:myPut($split[1], (), $split[2], $split[3])

The VISITS table contains the following data after the query runs:

TIME NAME PAGE CODE
------------------------------ --------------- --------------- ----------
30-OCT-13 10.00.01.000000 AM john index.html 200
30-OCT-13 10.05.20.000000 AM john about.html 200
01-NOV-13 08.00.08.000000 AM laura index.html 200
04-NOV-13 06.12.51.000000 AM kelly index.html 200
04-NOV-13 06.12.40.000000 AM kelly contact.html 200
28-OCT-13 06.00.00.000000 AM john index.html 200
28-OCT-13 08.30.02.000000 AM kelly index.html 200
28-OCT-13 08.32.50.000000 AM kelly about.html 200
30-OCT-13 10.00.10.000000 AM mike index.html 401
30-OCT-11 10.01.01.000000 AM index.html 401
04-NOV-11 06.15.40.000000 AM contact.html 401

Example 2 Loading Selected Columns
This example uses the %oracle:columns annotation to load only the time and name
columns of the table. It also loads only visits by john.

The column names specified in %oracle:columns are positionally correlated to the put
function parameters. Data values provided for the $c1 parameter are loaded into the
TIME column, and data values provided for the $c2 parameter are loaded into the NAME
column.

import module "oxh:text";

declare
 %oracle:put
 %oracle:columns('time', 'name')
 %oracle-property:targetTable('visits')
 %oracle-property:connection.user('db')
 %oracle-property:connection.password('password')

%oracle-property:connection.url('jdbc:oracle:thin:@//localhost:1521/orcl.exampl
e.com')
function local:myPut($c1, $c2) external;

for $line in text:collection("mydata/*visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
where $split[2] eq 'john'
return
 local:myPut($split[1], $split[2])

If the VISITS table is empty before the query runs, then it contains the following data
afterward:

TIME NAME PAGE CODE
------------------------------ --------------- --------------- ----------
30-OCT-13 10.00.01.000000 AM john
30-OCT-13 10.05.20.000000 AM john
28-OCT-13 06.00.00.000000 AM john

Oracle Loader for Hadoop Configuration Properties and Corresponding %oracle-property Annotations

5-36 Oracle Big Data Connectors User's Guide

Oracle Loader for Hadoop Configuration Properties and Corresponding
%oracle-property Annotations

When you use the Oracle Database adapter of Oracle XQuery for Hadoop, you
indirectly use Oracle Loader for Hadoop. Oracle Loader for Hadoop defines
configuration properties that control various aspects of connecting to Oracle Database
and writing data. Oracle XQuery for Hadoop supports many of these properties,
which are listed in the last column of Table 5–4.

You can specify these properties with the generic -conf and -D hadoop command-line
options in Oracle XQuery for Hadoop. Properties specified using this method apply to
all Oracle Database adapter put functions in your query. See "Running Queries" on
page 4-13 and especially "Generic Options" on page 4-14 for more information about
the hadoop command-line options.

Alternatively, you can specify these properties as Oracle Database adapter put
function annotations with the %oracle-property prefix. These annotations are listed in
the second column of Table 5–4. Annotations apply only to the particular Oracle
Database adapter put function that contains them in its declaration.

For example, you can set the target table to VISITS by adding the following lines to the
configuration file, and identifying the configuration file with the -conf option:

<property>
 <name>oracle.hadoop.loader.targetTable</name>
 <value>visits</value>
</property>

You can also set the target table to VISITS with the -D option, using the same Oracle
Loader for Hadoop property:

-D oracle.hadoop.loader.targetTable=visits

Both methods set the target table to VISITS for all Oracle Database adapter put
functions in your query.

Alternatively, this annotation sets the target table to VISITS only for the particular put
function that has the annotation in the declaration:

%oracle-property:connection.url('visits')

This flexibility is provided for convenience. For example, if a query has multiple
Oracle Database adapter put functions, each writing to a different table in the same
database, then the most convenient way to specify the necessary information is like
this:

■ Use the oracle.hadoop.loader.connection.url property in the configuration file
to specify the database connection URL. Then identify the configuration file using
the -conf option. This option sets the same database connection URL for all Oracle
Database adapter put functions in your query.

■ Set a different table name using the %oracle-property:targetTable annotation in
each Oracle Database adapter put function declaration.

Table 5–4 identifies the Oracle Loader for Hadoop properties and their equivalent
Oracle XQuery for Hadoop annotations by functional category. Oracle XQuery for
Hadoop supports only the Oracle Loader for Hadoop properties listed in this table.

Oracle Database Adapter

Oracle XQuery for Hadoop Reference 5-37

Table 5–4 Configuration Properties and Corresponding %oracle-property Annotations

Category Property Annotation

Connection oracle.hadoop.loader.connection.defaultExecu
teBatch

%oracle-property:connection.defaultExecu
teBatch

Connection oracle.hadoop.loader.connection.oci_url %oracle-property:connection.oci_url

Connection oracle.hadoop.loader.connection.password %oracle-property:connection.password

Connection oracle.hadoop.loader.connection.sessionTimeZ
one

%oracle-property:connection.sessionTimeZ
one

Connection oracle.hadoop.loader.connection.tns_admin %oracle-property:connection.tns_admin

Connection oracle.hadoop.loader.connection.tnsEntryName %oracle-property:connection.tnsEntryName

Connection oracle.hadoop.loader.connection.url %oracle-property:connection.url

Connection oracle.hadoop.loader.connection.user %oracle-property:connection.user

Connection oracle.hadoop.loader.connection.wallet_
location

%oracle-property:connection.wallet_
location

General oracle.hadoop.loader.badRecordFlushInterval %oracle-property:badRecordFlushInterval

General oracle.hadoop.loader.compressionFactors %oracle-property:compressionFactors

General oracle.hadoop.loader.enableSorting %oracle-property:enableSorting

General oracle.hadoop.loader.extTabDirectoryName %oracle-property:extTabDirectoryName

General oracle.hadoop.loader.loadByPartition %oracle-property:loadByPartition

General oracle.hadoop.loader.logBadRecords %oracle-property:logBadRecords

General oracle.hadoop.loader.rejectLimit %oracle-property:rejectLimit

General oracle.hadoop.loader.sortKey %oracle-property:sortKey

General oracle.hadoop.loader.tableMetadataFile %oracle-property:tableMetadataFile

General oracle.hadoop.loader.targetTable %oracle-property:targetTable

Output oracle.hadoop.loader.output.dirpathBufsize %oracle-property:dirpathBufsize

Output oracle.hadoop.loader.output.escapeEnclosers %oracle-property:output.escapeEnclosers

Output oracle.hadoop.loader.output.fieldTerminator %oracle-property:output.fieldTerminator

Output oracle.hadoop.loader.output.granuleSize %oracle-property:output.granuleSize

Output oracle.hadoop.loader.output.initialFieldEncl
oser

%oracle-property:output.initialFieldEncl
oser

Output oracle.hadoop.loader.output.trailingFieldEnc
loser

%oracle-property:output.trailingFieldEnc
loser

Sampler oracle.hadoop.loader.sampler.enableSampling %oracle-property:sampler.enableSampling

Sampler oracle.hadoop.loader.sampler.hintMaxSplitSiz
e

%oracle-property:sampler.hintMaxSplitSiz
e

Sampler oracle.hadoop.loader.sampler.hintNumMapTasks %oracle-property:sampler.hintNumMapTask

Sampler oracle.hadoop.loader.sampler.loadCI %oracle-property:sampler.loadCI

Sampler oracle.hadoop.loader.sampler.maxHeapBytes %oracle-property:sampler.maxHeapBytes

Sampler oracle.hadoop.loader.sampler.maxLoadFactor %oracle-property:sampler.maxLoadFactor

Oracle Loader for Hadoop Configuration Properties and Corresponding %oracle-property Annotations

5-38 Oracle Big Data Connectors User's Guide

Sampler oracle.hadoop.loader.sampler.maxSamplesPct %oracle-property:sampler.maxSamplesPct

Sampler oracle.hadoop.loader.sampler.minSplits %oracle-property:sampler.minSplits

Sampler oracle.hadoop.loader.sampler.numThreads %oracle-property:sampler.numThreads

Table 5–4 (Cont.) Configuration Properties and Corresponding %oracle-property Annotations

Category Property Annotation

Oracle NoSQL Database Adapter

Oracle XQuery for Hadoop Reference 5-39

Oracle NoSQL Database Adapter

This adapter provides functions to read and write values stored in Oracle NoSQL
Database.

This adapter is described in the following topics:

■ Prerequisites for Using the Oracle NoSQL Database Adapter

■ Built-in Functions for Reading from and Writing to Oracle NoSQL Database

■ Custom Functions for Reading Values from Oracle NoSQL Database

■ Custom Functions for Retrieving Single Values from Oracle NoSQL Database

■ Custom Functions for Writing to Oracle NoSQL Database

■ Examples of Oracle NoSQL Database Adapter Functions

■ Oracle NoSQL Database Adapter Configuration Properties

Prerequisites for Using the Oracle NoSQL Database Adapter

5-40 Oracle Big Data Connectors User's Guide

Prerequisites for Using the Oracle NoSQL Database Adapter

Before you write queries that use the Oracle NoSQL Database adapter, you must
configure Oracle XQuery for Hadoop to use your Oracle NoSQL Database server.

You must set the following:

■ The KVHOME environment variable to the local directory containing the Oracle
NoSQL database lib directory.

■ The oracle.kv.hosts and oracle.kv.kvstore configuration properties.

■ The OXH_SOLR_MR_HOME environment variable to the local directory containing
search-mr-version.jar and search-mr-version-job.jar, only when Tika parser
is invoked. That is, only when kv:collection-tika() or kv:get-tika() functions
are invoked or, %kv:collection(’tika’) or %kv:get(’tika’) annotations are
used with external functions.

You can set the configuration properties using either the -D or -conf options in the
hadoop command when you run the query. See "Running Queries" on page 4-13.

This example sets KVHOME and uses the hadoop -D option in a query to set
oracle.kv.kvstore:

$ export KVHOME=/local/path/to/kvstore/
$ hadoop jar $OXH_HOME/lib/oxh.jar -D oracle.kv.hosts=example.com:5000 -D
oracle.kv.kvstore=kvstore ./myquery.xq -output ./myoutput

This example sets OXH_SOLR_MR_HOME environment variable when the Tika parser is
invoked:

$ export OXH_SOLR_MR_HOME=/usr/lib/solr/contrib/mr

See "Oracle NoSQL Database Adapter Configuration Properties" on page 5-56.

Oracle NoSQL Database Adapter

Oracle XQuery for Hadoop Reference 5-41

Built-in Functions for Reading from and Writing to Oracle NoSQL Database

To use the built-in functions in your query, you must import the Oracle NoSQL
Database module as follows

import module "oxh:kv";

The Oracle NoSQL Database module contains the following functions:

■ kv:collection-text

■ kv:collection-avroxml

■ kv:collection-xml

■ kv:collection-binxml

■ kv:collection-tika

■ kv:put-text

■ kv:put-xml

■ kv:put-binxml

■ kv:get-text

■ kv:get-avroxml

■ kv:get-xml

■ kv:get-binxml

■ kv:get-tika

■ kv:key-range

kv:collection-text
Accesses a collection of values in the database. Each value is decoded as UTF-8 and
returned as a string.

Signature
declare %kv:collection("text") function
 kv:collection-text($parent-key as xs:string?, $depth as xs:int?, $subrange as
xs:string?) as xs:string* external;

declare %kv:collection("text") function
 kv:collection-text($parent-key as xs:string?, $depth as xs:int?) as xs:string*
external;

declare %kv:collection("text") function
 kv:collection-text($parent-key as xs:string?) as xs:string* external;

Parameters
See "Parameters" on page 5-47. Omitting $subrange is the same as specifying
$subrange(). Likewise, omitting $depth is the same as specifying $depth().

Returns
One string for each value

Built-in Functions for Reading from and Writing to Oracle NoSQL Database

5-42 Oracle Big Data Connectors User's Guide

kv:collection-avroxml
Accesses a collection of values in the database. Each value is read as an Avro record
and returned as an XML element. The records are converted to XML as described in
"Reading Records" on page 5-11.

Signature
declare %kv:collection("avroxml") function
 kv:collection-avroxml($parent-key as xs:string?, $depth as xs:int?, $subrange
as xs:string?) as element()* external;

declare %kv:collection("avroxml") function
 kv:collection-avroxml($parent-key as xs:string?, $depth as xs:int?) as
element()* external;

declare %kv:collection("avroxml") function
 kv:collection-avroxml($parent-key as xs:string?) as element()* external;

Parameters
See "Parameters" on page 5-47. Omitting $subrange is the same as specifying
$subrange(). Likewise, omitting $depth is the same as specifying $depth().

Returns
One XML element for each Avro record

kv:collection-xml
Accesses a collection of values in the database. Each value is read as a sequence of
bytes and parsed as XML.

Signature
declare %kv:collection("xml") function
 kv:collection-xml($parent-key as xs:string?, $depth as xs:int?, $subrange as
xs:string?) as document-node()* external;

declare %kv:collection("xml") function
 kv:collection-xml($parent-key as xs:string?, $depth as xs:int?) as
document-node()* external;

declare %kv:collection("xml") function
 kv:collection-xml($parent-key as xs:string?) as document-node()* external;

Parameters
See "Parameters" on page 5-47. Omitting $subrange is the same as specifying
$subrange(). Likewise, omitting $depth is the same as specifying $depth().

Returns
One XML document for each value.

kv:collection-binxml
Accesses a collection of values in the database. Each value is read as XDK binary XML
and returned as an XML document.

Signature
declare %kv:collection("binxml") function

Oracle NoSQL Database Adapter

Oracle XQuery for Hadoop Reference 5-43

 kv:collection-binxml($parent-key as xs:string?, $depth as xs:int?, $subrange as
xs:string?) as document-node()* external;

declare %kv:collection("binxml") function
 kv:collection-binxml($parent-key as xs:string?, $depth as xs:int?) as
document-node()* external;

declare %kv:collection("binxml") function
 kv:collection-binxml($parent-key as xs:string?) as document-node()* external;

Parameters
See "Parameters" on page 5-47. Omitting $subrange is the same as specifying
$subrange(). Likewise, omitting $depth is the same as specifying $depth().

Returns
One XML document for each value.

See Also
Oracle XML Developer's Kit Programmer's Guide

kv:collection-tika
Uses Tika to parse the specified value when invoked and returns as a document node.

Signature
declare %kv:collection("tika") function
kv:collection-tika($parent-key as xs:string?, $depth as xs:int?, $subrange as
xs:string?) $contentType as xs:string?) as document-node()* external;

Parameters
See "Parameters" on page 5-47. Omitting $subrange is the same as specifying
$subrange(). Likewise, omitting $depth is the same as specifying $depth().

Returns
One document node for each value.

kv:put-text
Writes a key-value pair. The $value is encoded as UTF-8.

Signature
declare %kv:put("text") function
 kv:put-text($key as xs:string, $value as xs:string) external;

kv:put-xml
Writes a key/value pair. The $xml is serialized and encoded as UTF-8.

Signature
declare %kv:put("xml") function
 kv:put-xml($key as xs:string, $xml as node()) external;

kv:put-binxml
Puts a key/value pair. The $xml is encoded as XDK binary XML. See Oracle XML
Developer's Kit Programmer's Guide.

Built-in Functions for Reading from and Writing to Oracle NoSQL Database

5-44 Oracle Big Data Connectors User's Guide

Signature
declare %kv:putkv:put-binxml("binxml") function
 ($key as xs:string, $xml as node()) external;

kv:get-text
Obtains the value associated with the key. The value is decoded as UTF-8 and returned
as a string.

Signature
declare %kv:get("text") function
 kv:get-text($key as xs:string) as xs:string? external;

kv:get-avroxml
Obtains the value associated with the key. The value is read as an Avro record and
returned as an XML element. The records are converted to XML as described in
"Reading Records" on page 5-11..

Signature
declare %kv:get("avroxml") function
 kv:get-avroxml($key as xs:string) as element()? external;

kv:get-xml
Obtains the value associated with the key. The value is read as a sequence of bytes and
parsed as XML.

Signature
declare %kv:get("xml") function
 kv:get-xml($key as xs:string) as document-node()? external;

kv:get-binxml
Obtains the value associated with the key. The value is read as XDK binary XML and
returned as an XML document.

Signature
declare %kv:get("binxml") function
 kv:get-binxml($key as xs:string) as document-node()? external;

See Also
Oracle XML Developer's Kit Programmer's Guide

kv:get-tika
Obtains the value associated with the key. The value is parsed as byte array and
returned as a document node.

Signature
declare %kv:get("tika") function
 kv:get-tika($key as xs:string, $contentType as xs:string?) as document-node()?
external;

See Also
Oracle XML Developer's Kit Programmer's Guide

Oracle NoSQL Database Adapter

Oracle XQuery for Hadoop Reference 5-45

kv:key-range
Defines a prefix range. The prefix defines both the lower and upper inclusive
boundaries.

Use this function as the subrange argument of a kv:collection function.

Signature
kv:key-range($prefix as xs:string) as xs:string;

kv:key-range
Specifies a key range.

Use this function as the subrange argument of a kv:collection function.

Signature
kv:key-range($start as xs:string, $start-inclusive as xs:boolean, $end as
xs:string, $end-inclusive as xs:boolean) as xs:string;

Parameters
$start: Defines the lower boundary of the key range.

$start-inclusive: A value of true includes $start in the range, or false omits it.

$end: Defines the upper boundary of the key range. It must be greater than $start.

$end-inclusive: A value of true includes $end in the range, or false omits it.

Custom Functions for Reading Values from Oracle NoSQL Database

5-46 Oracle Big Data Connectors User's Guide

Custom Functions for Reading Values from Oracle NoSQL Database

You can use the following functions to read values from Oracle NoSQL Database.
These annotations provide additional functionality that is not available using the
built-in functions.

5Signature
Custom functions for reading collections of NoSQL values must have one of the
following signatures:

declare %kv:collection("text") [additional annotations]
 function local:myFunctionName($parent-key as xs:string?, $depth as xs:int?,
$subrange as xs:string?) as xs:string* external;

declare %kv:collection(["xml"|"binxml"|"tika"]) [additional annotations]
 function local:myFunctionName($parent-key as xs:string?, $depth as xs:int?,
$subrange as xs:string?) as document-node()* external;

declare %kv:collection("tika") [additional annotations]
 function local:myFunctionName($parent-key as xs:string?, $depth as xs:int?,
$subrange as xs:string?, $contentType as xs:string?) as document-node()* external;

5Annotations

%kv:collection("method")
Declares the NoSQL Database collection function. Required.

The method parameter is one of the following values:

■ avroxml: Each value is read as an Avro record and returned as an XML element.
The records are converted to XML as described in "Reading Records" on page 5-11.

■ binxml: Each value is read as XDK binary XML and returned as an XML
document.

■ text: Each value is decoded using the character set specified by the
%output:encoding annotation.

■ tika: Each value is parsed by Tika, and returned as a document node.

■ xml: Each value is parsed as XML, and returned as an XML document.

%kv:key("true" | "false")
Controls whether the key of a key-value pair is set as the document-uri of the returned
value. Specify true to return the key.

The default setting is true when method is xml, avroxml, or binxml, and false when it
is text. Text functions with this annotation set to true must be declared to return
text()? instead of xs:string?. Atomic xs:string values are not associated with a
document node, but text nodes are. For example:

declare %kv:collection("text") %kv:key("true")
 function local:col($parent-key as xs:string?) as text()* external;

When the key is returned, you can obtain its string representation by using the
kv:key() function. For example:

for $value in local:col(...)
let $key := $value/kv:key()

Oracle NoSQL Database Adapter

Oracle XQuery for Hadoop Reference 5-47

return ...

%avro:schema-kv("schema-name")
Specifies the Avro reader schema. This annotation is valid only when method is
avroxml. Optional.

The schema-name is a fully qualified record name. The record schema is retrieved from
the Oracle NoSQL Database catalog. The record value is mapped to the reader schema.
For example, %avro:schema-kv("org.example.PersonRecord").

%output:encoding
Specifies the character encoding of text values. UTF-8 is assumed when this annotation
is not used. The valid encodings are those supported by the JVM.

This annotation currently only applies to the text method. For XML files, the
document's encoding declaration is used if it is available.

5Parameters

Parameter 1: $parent-key as xs:string?
Specifies the parent key whose child KV pairs are returned by the function. The major
key path must be a partial path and the minor key path must be empty. An empty
sequence results in fetching all keys in the store.

Parameter 2: $depth as xs:int?
Specifies whether parents, children, descendants, or a combination are returned. The
following values are valid:

■ kv:depth-parent-and-descendants(): Selects the parents and all descendants.

■ kv:depth-children-only(): Selects only the immediately children, but not the
parent.

■ kv:depth-descendants-only(): Selects all descendants, but not the parent.

■ kv:depth-parent-and-children(): Selects the parent and the immediate children.

An empty sequence implies kv:depth-parent-and-descendants().

This example selects all the descendants, but not the parent:

kv:collection-text("/parent/key", kv:depth-descendants-only(), ...

See Also: For information about Avro schemas, the Oracle NoSQL
Database Getting Started Guide at

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/sch
emaevolution.html

See Also: "Supported Encodings" in the Oracle Java SE
documentation at

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/e
ncoding.doc.html

See Also: For the format of the key, Oracle NoSQL Database Java
Reference at

http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/Key.h
tml#toString

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html
http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/Key.html#toString
http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/Key.html#toString

Custom Functions for Reading Values from Oracle NoSQL Database

5-48 Oracle Big Data Connectors User's Guide

Parameter 3: $subRange as xs:string?
Specifies a subrange to further restrict the range under parentKey to the major path
components. The format of the string is:

<startType>/<start>/<end>/<endType>

The startType and endType are either I for inclusive or E for exclusive.

The start and end are the starting and ending key strings.

If the range does not have a lower boundary, then omit the leading startType/start
specification from the string representation. Similarly, if the range does not have an
upper boundary, then omit the trailing end/endType specification. A KeyRange requires
at least one boundary, thus at least one specification must appear in the string
representation.

The kv:key-range function provides a convenient way to create a range string.

The value can also be the empty sequence.

The following examples are valid subrange specifications:

Example Description

I/alpha/beta/E From alpha inclusive to beta exclusive

E//0123/I From "" exclusive to 0123 inclusive

I/chi/ From chi inclusive to infinity

E// From "" exclusive to infinity

/chi/E From negative infinity to chi exclusive

//I From negative infinity to "" inclusive

Oracle NoSQL Database Adapter

Oracle XQuery for Hadoop Reference 5-49

Custom Functions for Retrieving Single Values from Oracle NoSQL Database

The Oracle NoSQL Database adapter has get functions, which enable you to retrieve a
single value from the database. Unlike collection functions, calls to get functions are
not distributed across the cluster. When a get function is called, the value is retrieved
by a single task.

5Signature
Custom get functions must have one of the following signatures:

declare %kv:get("text") [additional annotations]
 function local:myFunctionName($key as xs:string) as xs:string? external;

declare %kv:get("avroxml") [additional annotations]
 function local:myFunctionName($key as xs:string) as element()? external;

declare %kv:get(["xml"|"binxml"|"tika"]) [additional annotations]
 function local:myFunctionName($key as xs:string) as document-node()?

declare %kv:get(["tika"]) [additional annotations]
 function local:myFunctionName($key as xs:string $contentType as xs:string?) as
document-node()?

5Annotations

%kv:get("method")
Declares the NoSQL Database get function. Required.

The method parameter is one of the following values:

■ avroxml: The value is read as an Avro record and returned as an XML element.
The records are converted to XML as described in "Reading Records" on page 5-11.

■ binxml: The value is read as XDK binary XML and returned as an XML document.

■ text: The value is decoded using the character set specified by the
%output:encoding annotation.

■ tika: Each value is parsed by Tika, and returned as a document node.

■ xml: The value is parsed as XML and returned as an XML document.

%kv:key("true" | "false")
Controls whether the key of a key-value pair is set as the document-uri of the returned
value. Specify true to return the key.

The default setting is true when method is xml, avroxml, or binxml, and false when it
is text. Text functions with this annotation set to true must be declared to return
text()? instead of xs:string?. Atomic xs:string values are not associated with a
document node, but text nodes are.

When the key is returned, you can obtain its string representation by using the
kv:key() function.

%avro:schema-kv("schema-name")
Specifies the Avro reader schema. This annotation is valid only when method is
avroxml. Optional.

Custom Functions for Retrieving Single Values from Oracle NoSQL Database

5-50 Oracle Big Data Connectors User's Guide

The schema-name is a fully qualified record name. The record schema is retrieved from
the Oracle NoSQL Database catalog. The record value is mapped to the reader schema.
For example, %avro:schema-kv("org.example.PersonRecord").

%output:encoding
Specifies the character encoding of text values. UTF-8 is assumed when this annotation
is not used. The valid encodings are those supported by the JVM.

This annotation currently only applies to the text method. For XML files, the document
encoding declaration is used, if it is available.

See Also: For information about Avro schemas, the Oracle NoSQL
Database Getting Started Guide at

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/sch
emaevolution.html

See Also: "Supported Encodings" in the Oracle Java SE
documentation at

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/e
ncoding.doc.html

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/schemaevolution.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html

Oracle NoSQL Database Adapter

Oracle XQuery for Hadoop Reference 5-51

Custom Functions for Writing to Oracle NoSQL Database

You can use the following annotations to define functions that write to Oracle NoSQL
Database.

5Signature
Custom functions for writing to Oracle NoSQL Database must have one of the
following signatures:

declare %kv:put("text") function
 local:myFunctionName($key as xs:string, $value as xs:string) external;

declare %kv:put(["xml"|"binxml"|"avroxml"]) function
 local:myFunctionName($key as xs:string, $xml as node()) external;

5Annotations

%kv:put("method")
Declares the NoSQL Database module put function. Required.

The method determines how the value is stored. It must be one of the following values:

■ text: $value is serialized and encoded using the character set specified by the
%output:encoding annotation.

■ avroxml: $xml is mapped to an instance of the Avro record specified by the
%avro:schema-kv annotation. See "Writing XML as Avro" on page 5-15.

■ binxml: $xml is encoded as XDK binary XML.

■ xml: $xml is serialized and encoded using the character set specified by the
%output:encoding annotation. You can specify other XML serialization parameters
using %output:*.

%avro:schema-kv("schema-name")
Specifies the record schema of the values to be written. The annotation value is a fully
qualified record name. The record schema is retrieved from the Oracle NoSQL
Database catalog.

For example: %avro:schema-kv("org.example.PersonRecord")

%output:*
A standard XQuery serialization parameter for the output method (text or XML)
specified in %kv:put. See "Serialization Annotations" on page 5-114.

See Also: "The Influence of Serialization Parameters" sections for
XML and text output methods in XSLT and XQuery Serialization 3.0 at

http://www.w3.org/TR/xslt-xquery-serialization-30/

Examples of Oracle NoSQL Database Adapter Functions

5-52 Oracle Big Data Connectors User's Guide

Examples of Oracle NoSQL Database Adapter Functions

Example 1 Writing and Reading Text in Oracle NoSQL Database
This example uses the following text file is in HDFS. The file contains user profile
information such as user ID, full name, and age, separated by colons (:).

mydata/users.txt

john:John Doe:45
kelly:Kelly Johnson:32
laura:Laura Smith:
phil:Phil Johnson:27

The first query stores the lines of this text file in Oracle NoSQL Database as text values.

import module "oxh:text";
import module "oxh:kv";

for $line in text:collection("mydata/users.txt")
let $split := fn:tokenize($line, ":")
let $key := "/users/text/" || $split[1]
return
 kv:put-text($key, $line)

The next query reads the values from the database:

import module "oxh:text";
import module "oxh:kv";

for $value in kv:collection-text("/users/text")
let $split := fn:tokenize($value, ":")
where $split[2] eq "Phil Johnson"
return
 text:put($value)

The query creates a text file that contains the following line:

phil:Phil Johnson:27

Example 2 Writing and Reading Avro in Oracle NoSQL Database
In this example, the following Avro schema is registered with Oracle NoSQL Database:

{
 "type": "record",
 "name": "User",
 "namespace": "com.example",
 "fields" : [
 {"name": "id", "type": "string"},
 {"name": "full_name", "type": "string"},
 {"name": "age", "type": ["int", "null"] }
]
 }

The next query writes the user names to the database as Avro records.

import module "oxh:text";

declare %kv:put("avroxml") %avro:schema-kv("com.example.User")
 function local:put-user($key as xs:string, $value as node()) external;

for $line in text:collection("mydata/users.txt")

Oracle NoSQL Database Adapter

Oracle XQuery for Hadoop Reference 5-53

let $split := fn:tokenize($line, ":")
let $id := $split[1]
let $key := "/users/avro/" || $id
return
 local:put-user(
 $key,
 <user>
 <id>{$id}</id>
 <full_name>{$split[2]}</full_name>
 {
 if ($split[3] castable as xs:int) then
 <age>{$split[3]}</age>
 else
 ()
 }
 </user>
)

This query reads the values from the database:

import module "oxh:text";
import module "oxh:kv";

for $user in kv:collection-avroxml("/users/avro")
where $user/age gt 30
return
 text:put($user/full_name)

The query creates a text files with the following lines:

John Doe
Kelly Johnson

Example 3 Storing XML in NoSQL Database
The following query uses the XML files shown in Example 1 of "Examples of XML File
Adapter Functions" on page 5-101 as input. It writes each comment element as an
Oracle NoSQL Database value:

import module "oxh:xmlf";
import module "oxh:kv";

for $comment in xmlf:collection("mydata/comments*.xml")/comments/comment
let $key := "/comments/" || $comment/@id
return
 kv:put-xml($key, $comment)

The query writes the five comment elements as XML values in Oracle NoSQL Database.

For very large XML files, modify the query as follows to improve performance and
disk space consumption:

■ Use the following for clause, which causes each XML file to be split and processed
in parallel by multiple tasks:

for $comment in xmlf:collection("mydata/comments*.xml", "comment")

■ In the return clause, use kv:put-binxml instead of kv:put-xml to store the values
as binary XML instead of plain text.

Use the kv:collection-xml function to read the values in the database. For example:

import module "oxh:text";

Examples of Oracle NoSQL Database Adapter Functions

5-54 Oracle Big Data Connectors User's Guide

import module "oxh:kv";

for $comment in kv:collection-xml("/comments")/comment
return
 text:put($comment/@id || " " || $comment/@user)

The query creates text files that contain the following lines:

12345 john
23456 john
54321 mike
56789 kelly
87654 mike

Example 4 Storing XML as Avro in Oracle NoSQL Database
This example converts the XML values to Avro before they are stored.

Add the following Avro schema to Oracle NoSQL Database:

{
 "type": "record",
 "name": "Comment",
 "namespace": "com.example",
 "fields" : [
 {"name": "cid", "type": "string"},
 {"name": "user", "type": "string"},
 {"name": "content", "type": "string"},
 {"name": "likes", "type" : { "type" : "array", "items" : "string" } }
]
}

The following query writes five comment elements as Avro values in Oracle NoSQL
Database:

import module "oxh:xmlf";
import module "oxh:kv";

declare %kv:put("avroxml") %avro:schema-kv("com.example.Comment")
 function local:put-comment($key as xs:string, $value as node()) external;

for $comment in xmlf:collection("mydata/comments*.xml", "comment")
let $key := "/comments/" || $comment/@id
let $value :=
 <comment>
 <cid>{$comment/@id/data()}</cid>
 <user>{$comment/@user/data()}</user>
 <content>{$comment/@text/data()}</content>
 <likes>{
 for $like in $comment/like
 return <oxh:item>{$like/@user/data()}</oxh:item>
 }</likes>
 </comment>
return
 local:put-comment($key, $value)

Use the kv:collection-avroxml function to read the values in the database. For
example:

import module "oxh:text";
import module "oxh:kv";

Oracle NoSQL Database Adapter

Oracle XQuery for Hadoop Reference 5-55

for $comment in kv:collection-avroxml("/comments")
return
 text:put($comment/cid || " " || $comment/user || " " ||
count($comment/likes/*))

The query creates text files that contain the following lines:

12345 john 0
23456 john 2
54321 mike 1
56789 kelly 2
87654 mike 0

Oracle NoSQL Database Adapter Configuration Properties

5-56 Oracle Big Data Connectors User's Guide

Oracle NoSQL Database Adapter Configuration Properties

Oracle XQuery for Hadoop uses the generic options for specifying configuration
properties in the Hadoop command. You can use the -conf option to identify
configuration files, and the -D option to specify individual properties. See "Running
Queries" on page 4-13.

You can set various configuration properties for the Oracle NoSQL Database adapter
that control the durability characteristics and timeout periods. You must set
oracle.kv.hosts and oracle.kv.kvstore.

The following properties configure the Oracle NoSQL Database adapter.

oracle.hadoop.xquery.kv.config.durability
Type: String

Default Value: NO_SYNC, NO_SYNC, SIMPLE_MAJORITY

Description: Defines the durability characteristics associated with %kv:put operations.
The value consists of three parts, which you specify in order and separate with
commas (,):

MasterPolicy, ReplicaPolicy, ReplicaAck

■ MasterPolicy: The synchronization policy used when committing a transaction to
the master database. Set this part to one of the following constants:

NO_SYNC: Do not write or synchronously flush the log on a transaction commit.

SYNC: Write and synchronously flush the log on a transaction commit.

WRITE_NO_SYNC: Write but do not synchronously flush the log on a transaction
commit.

■ ReplicaPolicy: The synchronization policy used when committing a transaction to
the replica databases. Set this part to NO_SYNC, SYNC, or WRITE_NO_SYNC, as
described under MasterPolicy.

■ ReplicaAck: The acknowledgment policy used to obtain transaction
acknowledgments from the replica databases. Set this part to one of the following
constants:

ALL: All replicas must acknowledge that they have committed the transaction.

NONE: No transaction commit acknowledgments are required, and the master does
not wait for them.

SIMPLE_MAJORITY: A simple majority of replicas (such as 3 of 5) must acknowledge
that they have committed the transaction.

oracle.hadoop.xquery.kv.config.requestLimit
Type: Comma-separated list of integers

Default Value: 100, 90, 80

See Also: "Durability Guarantees" in Getting Started with Oracle
NoSQL Database at

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/dur
ability.html

http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/durability.html
http://docs.oracle.com/cd/NOSQL/html/GettingStartedGuide/durability.html

Oracle NoSQL Database Adapter

Oracle XQuery for Hadoop Reference 5-57

Description: Limits the number of simultaneous requests to prevent nodes with long
service times from consuming all threads in the KV store client. The value consists of
three integers, which you specify in order and separate with commas:

maxActiveRequests, requestThresholdPercent, nodeLimitPercent

■ maxActiveRequests: The maximum number of active requests permitted by the KV
client. This number is typically derived from the maximum number of threads that
the client has set aside for processing requests.

■ requestThresholdPercent: The percentage of maxActiveRequests at which requests are
limited.

■ nodeLimitPercent: The maximum number of active requests that can be associated
with a node when the number of active requests exceeds the threshold specified by
requestThresholdPercent.

oracle.hadoop.xquery.kv.config.requestTimeout
Type: Long

Default Value: 5000 ms

Description: Configures the request timeout period in milliseconds. The value must be
greater than zero (0).

oracle.hadoop.xquery.kv.config.socketOpenTimeout
Type: Long

Default Value: 5000 ms

Description: Configures the open timeout used when establishing sockets for client
requests, in milliseconds. Shorter timeouts result in more rapid failure detection and
recovery. The default open timeout is adequate for most applications. The value must
be greater than zero (0).

oracle.hadoop.xquery.kv.config.socketReadTimeout
Type: Long

Default Value: 30000 ms

Description: Configures the read timeout period associated with the sockets that make
client requests, in milliseconds. Shorter timeouts result in more rapid failure detection
and recovery. Nonetheless, the timeout period should be sufficient to allow the longest
timeout associated with a request.

oracle.kv.batchSize
Type: Key

Default Value: Not defined

Description: The desired number of keys for the InputFormat to fetch during each
network round trip. A value of zero (0) sets the property to a default value.

oracle.kv.consistency
Type: Consistency

Default Value: NONE_REQUIRED

Description: The consistency guarantee for reading child key-value pairs. The
following keywords are valid values:

■ ABSOLUTE: Requires the master to service the transaction so that consistency is
absolute.

Oracle NoSQL Database Adapter Configuration Properties

5-58 Oracle Big Data Connectors User's Guide

■ NONE_REQUIRED: Allows replicas to service the transaction, regardless of the state of
the replicas relative to the master.

oracle.kv.hosts
Type: String

Default Value: Not defined

Description: An array of one or more hostname:port pairs that identify the hosts in the
KV store with the source data. Separate multiple pairs with commas.

oracle.kv.kvstore
Type: String

Default Value: Not defined

Description: The name of the KV store with the source data.

oracle.kv.timeout
Type: Long

Default Value: Not defined

Description: Sets a maximum time interval in milliseconds for retrieving a selection of
key-value pairs. A value of zero (0) sets the property to its default value.

See Also: Oracle NoSQL Database Java API Reference at

http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/hadoo
p/KVInputFormatBase.html

http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/hadoop/KVInputFormatBase.html
http://docs.oracle.com/cd/NOSQL/html/javadoc/oracle/kv/hadoop/KVInputFormatBase.html

Sequence File Adapter

Oracle XQuery for Hadoop Reference 5-59

Sequence File Adapter

The sequence file adapter provides functions to read and write Hadoop sequence files.
A sequence file is a Hadoop-specific file format composed of key-value pairs.

The functions are described in the following topics:

■ Built-in Functions for Reading and Writing Sequence Files

■ Custom Functions for Reading Sequence Files

■ Custom Functions for Writing Sequence Files

■ Examples of Sequence File Adapter Functions

See Also: The Hadoop wiki for a description of Hadoop sequence
files at

http://wiki.apache.org/hadoop/SequenceFile

Built-in Functions for Reading and Writing Sequence Files

5-60 Oracle Big Data Connectors User's Guide

Built-in Functions for Reading and Writing Sequence Files

To use the built-in functions in your query, you must import the sequence file module
as follows:

import module "oxh:seq";

The sequence file module contains the following functions:

■ seq:collection

■ seq:collection-xml

■ seq:collection-binxml

■ seq:collection-tika

■ seq:put

■ seq:put-xml

■ seq:put-binxml

For examples, see "Examples of Sequence File Adapter Functions" on page 5-68.

seq:collection
Accesses a collection of sequence files in HDFS and returns the values as strings. The
files may be split up and processed in parallel by multiple tasks.

Signature
declare %seq:collection("text") function
 seq:collection($uris as xs:string*) as xs:string* external;

Parameters
$uris: The sequence file URIs. The values in the sequence files must be either
org.apache.hadoop.io.Text or org.apache.hadoop.io.BytesWritable. For
BytesWritable values, the bytes are converted to a string using a UTF-8 decoder.

Returns
One string for each value in each file.

seq:collection-xml
Accesses a collection of sequence files in HDFS, parses each value as XML, and returns
it. Each file may be split up and processed in parallel by multiple tasks.

Signature
declare %seq:collection("xml") function
 seq:collection-xml($uris as xs:string*) as document-node()* external;

Parameters
$uris: The sequence file URIs. The values in the sequence files must be either
org.apache.hadoop.io.Text or org.apache.hadoop.io.BytesWritable. For
BytesWritable values, the XML document encoding declaration is used, if it is
available.

Sequence File Adapter

Oracle XQuery for Hadoop Reference 5-61

Returns
One XML document for each value in each file. See "Tika Parser Output Format" on
page 5-92.

seq:collection-binxml
Accesses a collection of sequence files in the HDFS, reads each value as binary XML,
and returns it. Each file may be split up and processed in parallel by multiple tasks.

Signature
declare %seq:collection("binxml") function
 seq:collection-binxml($uris as xs:string*) as document-node()* external;

Parameters
$uris: The sequence file URIs. The values in the sequence files must be
org.apache.hadoop.io.BytesWritable. The bytes are decoded as binary XML.

Returns
One XML document for each value in each file.

Notes
You can use this function to read files that were created by seq:put-binxml in a
previous query. See "seq:put-binxml" on page 5-63.

See Also
Oracle XML Developer's Kit Programmer's Guide

seq:collection-tika
Uses Tika to parse the sequence files in the HDFS. The values in the sequence files
must be either org.apache.hadoop.io.Text or
org.apache.hadoop.io.BytesWritable. For each value a document node returned
produced by Tika.

Signature
declare %seq:collection("tika") function
 seq:collection-tika($uris as xs:string*) as document-node()* external;
declare %seq:collection("tika") function
 seq:collection-tika($uris as xs:string*, $contentType as xs:string?) as
document-node()* external;

Parameters
$uris: The sequence file URIs. The values in the sequence files must be either
org.apache.hadoop.io.Text or org.apache.hadoop.io.BytesWritable. Tika library
automatically detects character encoding. Alternatively, the encoding can be passed in
$contentType parameter as charset attribute.

$contentType: Specifies the media type of the content to parse, and may have the
charset attribute.

Returns
One document node for each value in each file.

Built-in Functions for Reading and Writing Sequence Files

5-62 Oracle Big Data Connectors User's Guide

seq:put
Writes either the string value or both the key and string value of a key-value pair to a
sequence file in the output directory of the query.

This function writes the keys and values as org.apache.hadoop.io.Text.

When the function is called without the $key parameter, it writes the values as
org.apache.hadoop.io.Text and sets the key class to
org.apache.hadoop.io.NullWritable, because there are no key values.

Signature
declare %seq:put("text") function
 seq:put($key as xs:string, $value as xs:string) external;

declare %seq:put("text") function
 seq:put($value as xs:string) external;

Parameters
$key: The key of a key-value pair

$value: The value of a key-value pair

Returns
empty-sequence()

Notes
The values are spread across one or more sequence files. The number of files created
depends on how the query is distributed among tasks. Each file has a name that starts
with part, such as part-m-00000. You specify the output directory when the query
executes. See "Running Queries" on page 4-13.

seq:put-xml
Writes either an XML value or a key and XML value to a sequence file in the output
directory of the query.

This function writes the keys and values as org.apache.hadoop.io.Text.

When the function is called without the $key parameter, it writes the values as
org.apache.hadoop.io.Text and sets the key class to
org.apache.hadoop.io.NullWritable, because there are no key values.

Signature
declare %seq:put("xml") function
 seq:put-xml($key as xs:string, $xml as node()) external;

declare %seq:put("xml") function
 seq:put-xml($xml as node()) external;

Parameters
$key: The key of a key-value pair

$value: The value of a key-value pair

Returns
empty-sequence()

Sequence File Adapter

Oracle XQuery for Hadoop Reference 5-63

Notes
The values are spread across one or more sequence files. The number of files created
depends on how the query is distributed among tasks. Each file has a name that starts
with "part," such as part-m-00000. You specify the output directory when the query
executes. See "Running Queries" on page 4-13.

seq:put-binxml
Encodes an XML value as binary XML and writes the resulting bytes to a sequence file
in the output directory of the query. The values are spread across one or more
sequence files.

This function writes the keys as org.apache.hadoop.io.Text and the values as
org.apache.hadoop.io.BytesWritable.

When the function is called without the $key parameter, it writes the values as
org.apache.hadoop.io.BytesWritable and sets the key class to
org.apache.hadoop.io.NullWritable, because there are no key values.

Signature
declare %seq:put("binxml") function
 seq:put-binxml($key as xs:string, $xml as node()) external;

declare %seq:put("binxml") function
 seq:put-binxml($xml as node()) external;

Parameters
$key: The key of a key-value pair

$value: The value of a key-value pair

Returns
empty-sequence()

Notes
The number of files created depends on how the query is distributed among tasks.
Each file has a name that starts with part, such as part-m-00000. You specify the
output directory when the query executes. See "Running Queries" on page 4-13.

You can use the seq:collection-binxml function to read the files created by this
function. See "seq:collection-binxml" on page 5-61.

See Also
Oracle XML Developer's Kit Programmer's Guide

Custom Functions for Reading Sequence Files

5-64 Oracle Big Data Connectors User's Guide

Custom Functions for Reading Sequence Files

You can use the following annotations to define functions that read collections of
sequence files. These annotations provide additional functionality that is not available
using the built-in functions.

5Signature
Custom functions for reading sequence files must have one of the following
signatures:

declare %seq:collection("text") [additional annotations]
 function local:myFunctionName($uris as xs:string*) as xs:string* external;

declare %seq:collection(["xml"|"binxml"|"tika"]) [additional annotations]
 function local:myFunctionName($uris as xs:string*) as document-node()*
external;
declare %seq:collection(["tika"]) [additional annotations]
 function local:myFunctionName($uris as xs:string*, $contentType as xs:string?)
as document-node()* external;

5Annotations

%seq:collection(["method"])
Declares the sequence file collection function, which reads sequence files. Required.

The optional method parameter can be one of the following values:

■ text: The values in the sequence files must be either org.apache.hadoop.io.Text
or org.apache.hadoop.io.BytesWritable. Bytes are decoded using the character
set specified by the %output:encoding annotation. They are returned as
xs:string. Default.

■ xml: The values in the sequence files must be either org.apache.hadoop.io.Text
or org.apache.hadoop.io.BytesWritable. The values are parsed as XML and
returned by the function.

■ binxml: The values in the sequence files must be
org.apache.hadoop.io.BytesWritable. The values are read as XDK binary XML
and returned by the function. See Oracle XML Developer's Kit Programmer's Guide.

■ tika: The values in the sequence files must be either org.apache.hadoop.io.Text
or org.apache.hadoop.io.BytesWritable. The values are parsed by Tika and
returned by the function.

%output:encoding("charset")
Specifies the character encoding of the input values. The valid encodings are those
supported by the JVM. UTF-8 is the default encoding.

%seq:key("true" | "false")
Controls whether the key of a key-value pair is set as the document-uri of the returned
value. Specify true to return the keys. The default setting is true when method is
binxml or xml, and false when it is text.

See Also: "Supported Encodings" in the Oracle Java SE
documentation at

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/e
ncoding.doc.html

See http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html.
See http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html.

Sequence File Adapter

Oracle XQuery for Hadoop Reference 5-65

Text functions with this annotation set to true must return text()* instead of
xs:string* because atomic xs:string is not associated with a document.

When the keys are returned, you can obtain their string representations by using
seq:key function.

This example returns text instead of string values because %seq:key is set to true.

declare %seq:collection("text") %seq:key("true")
 function local:col($uris as xs:string*) as text()* external;

The next example uses the seq:key function to obtain the string representations of the
keys:

for $value in local:col(...)
let $key := $value/seq:key()
return
 .
 .
 .

%seq:split-max("split-size")
Specifies the maximum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-min, min($split-max, $block-size)). Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

%seq:split-max(1024)
%seq:split-max("1024")
%seq:split-max("1K")

%seq:split-min("split-size")
Specifies the minimum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-min, min($split-max, $block-size)). Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

%seq:split-min(1024)
%seq:split-min("1024")
%seq:split-min("1K")

Custom Functions for Writing Sequence Files

5-66 Oracle Big Data Connectors User's Guide

Custom Functions for Writing Sequence Files

You can use the following annotations to define functions that write collections of
sequence files in HDFS.

5Signature
Custom functions for writing sequence files must have one of the following signatures.
You can omit the $key argument when you are not writing a key value.

declare %seq:put("text") [additional annotations]
 function local:myFunctionName($key as xs:string, $value as xs:string) external;

declare %seq:put(["xml"|"binxml"]) [additional annotations]
 function local:myFunctionName($key as xs:string, $xml as node()) external;

5Annotations

%seq:put("method")
Declares the sequence file put function, which writes key-value pairs to a sequence
file. Required.

If you use the $key argument in the signature, then the key is written as
org.apache.hadoop.io.Text. If you omit the $key argument, then the key class is set
to org.apache.hadoop.io.NullWritable.

Set the method parameter to text, xml, or binxml. The method determines the type used
to write the value:

■ text: String written as org.apache.hadoop.io.Text

■ xml: XML written as org.apache.hadoop.io.Text

■ binxml: XML encoded as XDK binary XML and written as
org.apache.hadoop.io.BytesWritable

%seq:compress("codec", "compressionType")
Specifies the compression format used on the output. The default is no compression.
Optional.

The codec parameter identifies a compression codec. The first registered compression
codec that matches the value is used. The value matches a codec if it equals one of the
following:

1. The fully qualified class name of the codec

2. The unqualified class name of the codec

3. The prefix of the unqualified class name before Codec (case insensitive)

Set the compressionType parameter to one of these values:

■ block: Keys and values are collected in groups and compressed together. Block
compression is generally more compact, because the compression algorithm can
take advantage of similarities among different values.

■ record: Only the values in the sequence file are compressed.

All of these examples use the default codec and block compression:

%seq:compress("org.apache.hadoop.io.compress.DefaultCodec", "block")
%seq:compress("DefaultCodec", "block")
%seq:compress("default", "block")

Sequence File Adapter

Oracle XQuery for Hadoop Reference 5-67

%seq:file("name")
Specifies the output file name prefix. The default prefix is part.

%output:parameter
A standard XQuery serialization parameter for the output method (text or XML)
specified in %seq:put. See "Serialization Annotations" on page 5-114.

See Also:

The Hadoop Wiki SequenceFile topic at

http://wiki.apache.org/hadoop/SequenceFile

"The Influence of Serialization Parameters" sections for XML and text
output methods in XSLT and XQuery Serialization 3.0 at

http://www.w3.org/TR/xslt-xquery-serialization-30/

Examples of Sequence File Adapter Functions

5-68 Oracle Big Data Connectors User's Guide

Examples of Sequence File Adapter Functions

These examples queries three XML files in HDFS with the following contents. Each
XML file contains comments made by users on a specific day. Each comment can have
zero or more "likes" from other users.

mydata/comments1.xml

<comments date="2013-12-30">
 <comment id="12345" user="john" text="It is raining :("/>
 <comment id="56789" user="kelly" text="I won the lottery!">
 <like user="john"/>
 <like user="mike"/>
 </comment>
</comments>

mydata/comments2.xml

<comments date="2013-12-31">
 <comment id="54321" user="mike" text="Happy New Year!">
 <like user="laura"/>
 </comment>
</comments>

mydata/comments3.xml

<comments date="2014-01-01">
 <comment id="87654" user="mike" text="I don't feel so good."/>
 <comment id="23456" user="john" text="What a beautiful day!">
 <like user="kelly"/>
 <like user="phil"/>
 </comment>
</comments>

Example 1
The following query stores the comment elements in sequence files.

import module "oxh:seq";
import module "oxh:xmlf";

for $comment in xmlf:collection("mydata/comments*.xml", "comment")
return
 seq:put-xml($comment)

Example 2
The next query reads the sequence files generated by the previous query, which are
stored in an output directory named myoutput. The query then writes the names of
users who made multiple comments to a text file.

import module "oxh:seq";
import module "oxh:text";

for $comment in seq:collection-xml("myoutput/part*")/comment
let $user := $comment/@user
group by $user
let $count := count($comment)
where $count gt 1
return
 text:put($user || " " || $count)

Sequence File Adapter

Oracle XQuery for Hadoop Reference 5-69

The text file created by the previous query contain the following lines:

john 2
mike 2

See "XML File Adapter" on page 5-95.

Example 3
The following query extracts comment elements from XML files and stores them in
compressed sequence files. Before storing each comment, it deletes the id attribute and
uses the value as the key in the sequence files.

import module "oxh:xmlf";

declare
 %seq:put("xml")
 %seq:compress("default", "block")
 %seq:file("comments")
function local:myPut($key as xs:string, $value as node()) external;

for $comment in xmlf:collection("mydata/comments*.xml", "comment")
let $id := $comment/@id
let $newComment :=
 copy $c := $comment
 modify delete node $c/@id
 return $c
return
 local:myPut($id, $newComment)

Example 4
The next query reads the sequence files that the previous query created in an output
directory named myoutput. The query automatically decompresses the sequence files.

import module "oxh:text";
import module "oxh:seq";

for $comment in seq:collection-xml("myoutput/comments*")/comment
let $id := $comment/seq:key()
where $id eq "12345"
return
 text:put-xml($comment)

The query creates a text file that contains the following line:

<comment id="12345" user="john" text="It is raining :("/>

Solr Adapter

5-70 Oracle Big Data Connectors User's Guide

Solr Adapter

This adapter provides functions to create full-text indexes and load them into Apache
Solr servers. These functions call the Solr
org.apache.solr.hadoop.MapReduceIndexerTool at run time to generate a full-text
index on HDFS and optionally merge it into Solr servers. You can declare and use
multiple custom put functions supplied by this adapter and the built-in put function
within a single query. For example, you can load data into different Solr collections or
into different Solr clusters.

This adapter is described in the following topics:

■ Prerequisites for Using the Solr Adapter

■ Built-in Functions for Loading Data into Solr Servers

■ Custom Functions for Loading Data into Solr Servers

■ Examples of Solr Adapter Functions

■ Solr Adapter Configuration Properties

Solr Adapter

Oracle XQuery for Hadoop Reference 5-71

Prerequisites for Using the Solr Adapter

The first time that you use the Solr adapter, ensure that Solr is installed and configured
on your Hadoop cluster as described in "Installing Oracle XQuery for Hadoop" on
page 1-14.

Configuration Settings
Your Oracle XQuery for Hadoop query must use the following configuration
properties or the equivalent annotation:

■ oracle.hadoop.xquery.solr.loader.zk-host

■ oracle.hadoop.xquery.solr.loader.collection

If the index is loaded into a live set of Solr servers, then this configuration property or
the equivalent annotation is also required:

■ oracle.hadoop.xquery.solr.loader.go-live

You can set the configuration properties using either the -D or -conf options in the
hadoop command when you run the query. See "Running Queries" on page 4-13 and
"Solr Adapter Configuration Properties" on page 5-75

Example Query Using the Solr Adapter
This example sets OXH_SOLR_MR_HOME and uses the hadoop -D option in a query to set
the configuration properties:

$ export OXH_SOLR_MR_HOME=/usr/lib/solr/contrib/mr
$ hadoop jar $OXH_HOME/lib/oxh.jar -D
oracle.hadoop.xquery.solr.loader.zk-host=/solr -D
oracle.hadoop.xquery.solr.loader.collection=collection1 -D
oracle.hadoop.xquery.solr.loader.go-live=true ./myquery.xq -output ./myoutput

Built-in Functions for Loading Data into Solr Servers

5-72 Oracle Big Data Connectors User's Guide

Built-in Functions for Loading Data into Solr Servers

To use the built-in functions in your query, you must import the Solr module as
follows:

import module "oxh:solr";

The Solr module contains the following functions:

■ solr:put

The solr prefix is bound to the oxh:solr namespace by default.

solr:put
Writes a single document to the Solr index.

This document XML format is specified by Solr at

https://wiki.apache.org/solr/UpdateXmlMessages

Signature
declare %solr:put function
 solr:put($value as element(doc)) external;

Parameters
$value: A single XML element named doc, which contains one or more field
elements, as shown here:

<doc>
<field name="field_name_1">field_value_1</field>
 .
 .
 .
<field name="field_name_N">field_value_N</field>
</doc>

Returns
A generated index that is written into the output_dir/solr-put directory, where
output_dir is the query output directory

Solr Adapter

Oracle XQuery for Hadoop Reference 5-73

Custom Functions for Loading Data into Solr Servers

You can use the following annotations to define functions that generate full-text
indexes and load them into Solr.

5Signature
Custom functions for generating Solr indexes must have the following signature:

declare %solr:put [additional annotations]
 function local:myFunctionName($value as node()) external;

5Annotations

%solr:put
Declares the solr put function. Required.

%solr:file(directory_name)
Name of the subdirectory under the query output directory where the index files will
be written. Optional, the default value is the function local name.

%solr-property:property_name(value)
Controls various aspects of index generation. You can specify multiple
%solr-property annotations.

These annotations correspond to the command-line options of
org.apache.solr.hadoop.MapReduceIndexerTool. Each MapReduceIndexerTool?
option has an equivalent Oracle XQuery for Hadoop configuration property and a
%solr-property annotation. Annotations take precedence over configuration
properties. See "Solr Adapter Configuration Properties" on page 5-75 for more
information about supported configuration properties and the corresponding
annotations.

5Parameters
$value: An element or a document node conforming to the Solr XML syntax. See
"solr:put" on page 5-72 for details.

See Also: For more information about MapReduceIndexerTool?
command line options, see Cloudera Search User Guide at

http://www.cloudera.com/content/cloudera-content/cloudera-do
cs/Search/latest/Cloudera-Search-User-Guide/csug_
mapreduceindexertool.html

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_mapreduceindexertool.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_mapreduceindexertool.html

Examples of Solr Adapter Functions

5-74 Oracle Big Data Connectors User's Guide

Examples of Solr Adapter Functions

Example 1 Using the Built-in solr:put Function
This example uses the following HDFS text file. The file contains user profile
information such as user ID, full name, and age, separated by colons (:).

mydata/users.txt
john:John Doe:45
kelly:Kelly Johnson:32
laura:Laura Smith:
phil:Phil Johnson:27

The first query creates a full-text index searchable by name.

import module "oxh:text";
import module "oxh:solr";
for $line in text:collection("mydata/users.txt")
let $split := fn:tokenize($line, ":")
let $id := $split[1]
let $name := $split[2]
return solr:put(
<doc>
<field name="id">{ $id }</field>
<field name="name">{ $name }</field>
</doc>
)

The second query accomplishes the same result, but uses a custom put function. It also
defines all configuration parameters by using function annotations. Thus, setting
configuration properties is not required when running this query.

import module "oxh:text";
declare %solr:put %solr-property:go-live %solr-property:zk-host("/solr")
%solr-property:collection("collection1")
function local:my-solr-put($doc as element(doc)) external;
for $line in text:collection("mydata/users.txt")
let $split := fn:tokenize($line, ":")
let $id := $split[1]
let $name := $split[2]
return local:my-solr-put(
<doc>
<field name="id">{ $id }</field>
<field name="name">{ $name }</field>
</doc>
)

Solr Adapter

Oracle XQuery for Hadoop Reference 5-75

Solr Adapter Configuration Properties

The Solr adapter configuration properties correspond to the Solr
MapReduceIndexerTool options.

MapReduceIndexerTool is a MapReduce batch job driver that creates Solr index shards
from input files, and writes the indexes into HDFS. It also supports merging the
output shards into live Solr servers, typically a SolrCloud.

You can specify these properties with the generic -conf and -D hadoop command-line
options in Oracle XQuery for Hadoop. Properties specified using this method apply to
all Solr adapter put functions in your query. See "Running Queries" on page 4-13 and
especially "Generic Options" on page 4-14 for more information about the hadoop
command-line options.

Alternatively, you can specify these properties as Solr adapter put function
annotations with the %solr-property prefix. These annotations are identified in the
property descriptions. Annotations apply only to the particular Solr adapter put
function that contains them in its declaration.

oracle.hadoop.xquery.solr.loader.collection
Type: String

Default Value: Not defined

Equivalent Annotation: %solr-property:collection

Description: The SolrCloud collection for merging the index, such as mycollection.
Use this property with oracle.hadoop.xquery.solr.loader.go-live and
oracle.hadoop.xquery.solr.loader.zk-host. Required as either a property or an
annotation.

oracle.hadoop.xquery.solr.loader.fair-scheduler-pool
Type: String

Default Value: Not defined

Equivalent Annotation:%solr-property:fair-scheduler-pool

Description: The name of the fair scheduler pool for submitting jobs. The job runs
using fair scheduling instead of the default Hadoop scheduling method. Optional.

oracle.hadoop.xquery.solr.loader.go-live
Type: String values true or false

Default Value: false

Equivalent Annotation: %solr-property:go-live

Description: Set to true to enable the final index to merge into a live Solr cluster. Use
this property with oracle.hadoop.xquery.solr.loader.collection and
oracle.hadoop.xquery.solr.loader.zk-host. Optional.

See Also: For discussions about how Solr uses the
MapReduceIndexerTool options, see the Cloudera Search User Guide at

http://www.cloudera.com/content/cloudera-content/cloudera-do
cs/Search/latest/Cloudera-Search-User-Guide/csug_
mapreduceindexertool.html

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_mapreduceindexertool.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-User-Guide/csug_mapreduceindexertool.html

Solr Adapter Configuration Properties

5-76 Oracle Big Data Connectors User's Guide

oracle.hadoop.xquery.solr.loader.go-live-threads
Type: Integer

Default Value: 1000

Equivalent Annotation: %solr-property:go-live-threads

Description: The maximum number of live merges that can run in parallel. Optional.

oracle.hadoop.xquery.solr.loader.log4j
Type: String

Default Value:

Equivalent Annotation: %solr-property:log4j

Description: The relative or absolute path to the log4j.properties configuration file
on the local file system For example, /path/to/log4j.properties. Optional.

This file is uploaded for each MapReduce task.

oracle.hadoop.xquery.solr.loader.mappers
Type: String

Default Value: -1

Equivalent Annotation: %solr-property:mappers

Description: The maximum number of mapper tasks that Solr uses. A value of -1
enables the use of all map slots available on the cluster.

oracle.hadoop.xquery.solr.loader.max-segments
Type: String

Default Value: 1

Equivalent Annotation: %solr-property:max-segments

Description: The maximum number of segments in the index generated by each
reducer.

oracle.hadoop.xquery.solr.loader.reducers
Type: String

Default Value: -1

Equivalent Annotation: %solr-property:reducers

Description: The number of reducers to use:

■ -1: Uses all reduce slots available on the cluster.

■ -2: Uses one reducer for each Solr output shard. This setting disables the
MapReduce M-tree merge algorithm, which typically improves scalability.

oracle.hadoop.xquery.solr.loader.zk-host
Type: String

Default Value: Not defined

Equivalent Annotation: %solr-property:zk-host

Description: The address of a ZooKeeper ensemble used by the SolrCloud cluster.
Specify the address as a list of comma-separated host:port pairs, each corresponding to
a ZooKeeper server. For example,
127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183/solr. Optional.

Solr Adapter

Oracle XQuery for Hadoop Reference 5-77

If the address starts with a slash (/), such as /solr, then Oracle XQuery for Hadoop
automatically prefixes the address with the ZooKeeper connection string.

This property enables Solr to determine the number of output shards to create and the
Solr URLs in which to merge them. Use this property with
oracle.hadoop.xquery.solr.loader.collection and
oracle.hadoop.xquery.solr.loader.go-live. Required as either a property or an
annotation.

Text File Adapter

5-78 Oracle Big Data Connectors User's Guide

Text File Adapter

The text file adapter provides functions to read and write text files stored in HDFS. It
is described in the following topics:

■ Built-in Functions for Reading and Writing Text Files

■ Custom Functions for Reading Text Files

■ Custom Functions for Writing Text Files

■ Examples of Text File Adapter Functions

Text File Adapter

Oracle XQuery for Hadoop Reference 5-79

Built-in Functions for Reading and Writing Text Files

To use the built-in functions in your query, you must import the text file module as
follows:

import module "oxh:text";

The text file module contains the following functions:

■ text:collection

■ text:collection-xml

■ text:put

■ text:put-xml

■ text:trace

For examples, see "Examples of Text File Adapter Functions" on page 5-85.

text:collection
Accesses a collection of text files in HDFS. The files can be compressed using a
Hadoop-supported compression codec. They are automatically decompressed when
read.

The files might be split up and processed in parallel by multiple tasks.

Signature
declare %text:collection("text") function
 text:collection($uris as xs:string*) as xs:string* external;

declare %text:collection("text") function
 function text:collection($uris as xs:string*, $delimiter as xs:string?) as
xs:string* external;

Parameters
$uris: The text file URIs.

$delimiter: A custom delimiter on which the file is split. The default is the newline
character.

Returns
One string value for each file segment identified by the delimiter; for the default
delimiter, a string value for each line in each file

text:collection-xml
Accesses a collection of text files in HDFS. The files can be compressed using a
Hadoop-supported compression codec. They are automatically decompressed when
read.

The files might be split up and processed in parallel by multiple tasks. Each delimited
section of each file is parsed as an XML document and returned by the function.
Therefore, each segment must fully contain a single XML document, and any delimit
characters in the XML must be escaped with XML character references. By default, the
delimiter is a new line.

Built-in Functions for Reading and Writing Text Files

5-80 Oracle Big Data Connectors User's Guide

Signature
declare %text:collection("xml") function
 text:collection-xml($uris as xs:string*) as document-node()* external;

declare %text:collection("xml") function
 text:collection-xml($uris as xs:string*, $delimiter as xs:string?) as
document-node()* external;

Parameters
$uris: The text file URIs.

$delimiter: A custom delimiter on which the file is split. The default is the newline
character.

Returns
One string value for each file segment identified by the delimiter; for the default
delimiter, a string value for each line in each file

text:put
Writes a line to a text file in the output directory of the query. The lines are spread
across one or more files.

Signature
declare %text:put("text") function
 text:put($value as xs:string) external;

Parameters
$value: The text to write

Returns
empty-sequence()

Notes
The number of files created depends on how the query is distributed among tasks.
Each file has a name that starts with part, such as part-m-00000. You specify the
output directory when the query executes. See "Running Queries" on page 4-13.

text:put-xml
Writes XML to a line in a text file. The lines are spread across one or more files in the
output directory of the query.

Newline characters in the serialized XML are replaced with character references to
ensure that the XML does not span multiple lines. For example,
 replaces the
linefeed character (\n).

Signature
declare %text:put("xml") function
 text:put-xml($value as node()) external;

Parameters
$value: The XML to write

Text File Adapter

Oracle XQuery for Hadoop Reference 5-81

Returns
empty-sequence()

Notes
The number of files created depends on how the query is distributed among tasks.
Each file has a name that starts with part, such as part-m-00000. You specify the
output directory when the query executes. See "Running Queries" on page 4-13.

text:trace
Writes a line to a text file named trace-* in the output directory of the query. The lines
are spread across one or more files.

This function provides you with a quick way to write to an alternate output. For
example, you might create a trace file to identify invalid rows within a query, while
loading the data into an Oracle database table.

Signature
declare %text:put("text") %text:file("trace") function
 text:trace($value as xs:string) external;

Parameters
$value: The text to write

Returns
empty-sequence()

Custom Functions for Reading Text Files

5-82 Oracle Big Data Connectors User's Guide

Custom Functions for Reading Text Files

You can use the following annotations to define functions that read collections of text
files in HDFS. These annotations provide additional functionality that is not available
using the built-in functions.

The input files can be compressed with a Hadoop-supported compression codec. They
are automatically decompressed when read.

5Signature
Custom functions for reading text files must have one of the following signatures:

declare %text:collection("text") [additional annotations]
 function local:myFunctionName($uris as xs:string*, $delimiter as xs:string?) as
xs:string* external;

declare %text:collection("text") [additional annotations]
 function local:myFunctionName($uris as xs:string*) as xs:string* external;

declare %text:collection("xml") [additional annotations]
 function local:myFunctionName($uris as xs:string*, $delimiter as xs:string?) as
document-node()* external

declare %text:collection("xml") [additional annotations]
 function local:myFunctionName($uris as xs:string*) as document-node()*
external;

5Annotations

%text:collection(["method"])
Declares the text collection function. Required.

The optional method parameter can be one of the following values:

■ text: Each line in the text file is returned as xs:string. Default.

■ xml: Each line in the text file is parsed as XML and returned as document-node.
Each XML document must be fully contained on a single line. Newline characters
inside the document must be represented by a numeric character reference.

%text:split("delimiter")
Specifies a custom delimiter for splitting the input files. The default delimiter is the
newline character.

Do not combine this annotation with the $delimiter parameter. To specify a custom
delimiter, use either this annotation or the $delimiter parameter.

%text:split-max("split-size")
Specifies the maximum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-min, min($split-max, $block-size)). Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

%text:split-max(1024)
%text:split-max("1024")
%text:split-max("1K")

Text File Adapter

Oracle XQuery for Hadoop Reference 5-83

%text:split-min("split-size")
Specifies the minimum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-min, min($split-max, $block-size)). Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

%text:split-min(1024)
%text:split-min("1024")
%text:split-min("1K")

5Parameters

$uris as xs:string*
Lists the HDFS file URIs. The files can be uncompressed or compressed with a
Hadoop-supported codec. Required.

$delimiter as xs:string?
A custom delimiter on which the input text files are split. The default delimiter is a
new line. Do not combine this parameter with the %text:split annotation.

5Returns
xs:string* for the text method

document-node()* for the xml method

Custom Functions for Writing Text Files

5-84 Oracle Big Data Connectors User's Guide

Custom Functions for Writing Text Files

You can use the following annotations to define functions that write text files in HDFS.

5Signature
Custom functions for writing text files must have one of the following signatures:

declare %text:put("text") [additional annotations] function
 text:myFunctionName($value as xs:string) external;

declare %text:put("xml") [additional annotations] function
 text:myFunctionName($value as node()) external;

5Annotations

%text:put(["method"])
Declares the text put function. Required.

The optional method parameter can be one of the following values:

■ text: Writes data to a text file. Default.

■ xml: Writes data to an XML file. The XML is serialized and newline characters are
replaced with character references. This process ensures that the resulting XML
document is one text line with no line breaks.

%text:compress("codec")
Specifies the compression format used on the output. The default is no compression.
Optional.

The codec parameter identifies a compression codec. The first registered compression
codec that matches the value is used. The value matches a codec if it equals one of the
following:

1. The fully qualified class name of the codec

2. The unqualified class name of the codec

3. The prefix of the unqualified class name before "Codec" (case insensitive)

All of these examples use the default codec and block compression:

%text:compress("org.apache.hadoop.io.compress.DefaultCodec", "block")
%text:compress("DefaultCodec", "block")
%text:compress("default", "block")

%text:file("name")
Specifies the output file name prefix. The default prefix is part.

%output:parameter
A standard XQuery serialization parameter for the output method (text or XML)
specified in %text:put. See "Serialization Annotations" on page 5-114.

UTF-8 is currently the only supported character encoding.

Text File Adapter

Oracle XQuery for Hadoop Reference 5-85

Examples of Text File Adapter Functions

Example 1 Using Built-in Functions to Query Text Files
This example uses following text files in HDFS. The files contain a log of visits to
different web pages. Each line represents a visit to a web page and contains the time,
user name, and page visited.

mydata/visits1.log

2013-10-28T06:00:00, john, index.html, 200
2013-10-28T08:30:02, kelly, index.html, 200
2013-10-28T08:32:50, kelly, about.html, 200
2013-10-30T10:00:10, mike, index.html, 401

mydata/visits2.log

2013-10-30T10:00:01, john, index.html, 200
2013-10-30T10:05:20, john, about.html, 200
2013-11-01T08:00:08, laura, index.html, 200
2013-11-04T06:12:51, kelly, index.html, 200
2013-11-04T06:12:40, kelly, contact.html, 200

The following query filters out the pages visited by john and writes only the date and
page visited to a new text file:

import module "oxh:text";

for $line in text:collection("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
where $split[2] eq "john"
return
 text:put($split[1] || " " || $split[3])

This query creates a text file that contains the following lines:

2013-10-28T06:00:00 index.html
2013-10-30T10:00:01 index.html
2013-10-30T10:05:20 about.html

The next query computes the number of page visits per day:

import module "oxh:text";

for $line in text:collection("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
let $time := xs:dateTime($split[1])
let $day := xs:date($time)
group by $day
return
 text:put($day || " => " || count($line))

The query creates text files that contain the following lines:

2013-10-28 => 3
2013-10-30 => 3
2013-11-01 => 1
2013-11-04 => 2

Examples of Text File Adapter Functions

5-86 Oracle Big Data Connectors User's Guide

Example 2 Querying Simple Delimited Formats
This example uses the fn:tokenize function to parse the lines of a text file. This
technique works well for simple delimited formats.

The following query declares custom put and collection functions. It computes the
number of hits and the number of unique users for each page in the logs.

import module "oxh:text";

declare
 %text:collection("text")
 %text:split-max("32m")
function local:col($uris as xs:string*) as xs:string* external;

declare
 %text:put("xml")
 %text:compress("gzip")
 %text:file("pages")
function local:out($arg as node()) external;

for $line in local:col("mydata/visits*.log")
let $split := fn:tokenize($line, "\s*,\s*")
let $user := $split[2]
let $page := $split[3]
group by $page
return
 local:out(
 <page>
 <name>{$page}</name>
 <hits>{count($line)}</hits>
 <users>{fn:count(fn:distinct-values($user))}</users>
 </page>
)

The output directory of the previous query is named myoutput. The following lines are
written to myoutput/pages-r-*.gz.

<page><name>about.html</name><hits>2</hits><users>2</users></page>
<page><name>contact.html</name><hits>1</hits><users>1</users></page>
<page><name>index.html</name><hits>6</hits><users>4</users></page>

The files are compressed with the gzip codec. The following query reads the output
files, and writes the page name and total hits as plain text. The collection function
automatically decodes the compressed files.

import module "oxh:text";

for $page in text:collection-xml("myoutput/page*.gz")/page
return
 text:put($page/name || "," || $page/hits)

This query creates text files that contain the following lines:

about.html,2
contact.html,1
index.html,6

Example 3 Querying Complex Text Formats
The fn:tokenize function might not be adequate for complex formats that contain
variety of data types and delimiters. This example uses the fn:analyze-string
function to process a log file in the Apache Common Log format.

Text File Adapter

Oracle XQuery for Hadoop Reference 5-87

A text file named mydata/access.log in HDFS contains the following lines:

192.0.2.0 - - [30/Sep/2013:16:39:38 +0000] "GET /inddex.html HTTP/1.1" 404 284
192.0.2.0 - - [30/Sep/2013:16:40:54 +0000] "GET /index.html HTTP/1.1" 200 12390
192.0.2.4 - - [01/Oct/2013:12:10:54 +0000] "GET /index.html HTTP/1.1" 200 12390
192.0.2.4 - - [01/Oct/2013:12:12:12 +0000] "GET /about.html HTTP/1.1" 200 4567
192.0.2.1 - - [02/Oct/2013:08:39:38 +0000] "GET /indexx.html HTTP/1.1" 404 284
192.0.2.1 - - [02/Oct/2013:08:40:54 +0000] "GET /index.html HTTP/1.1" 200 12390
192.0.2.1 - - [02/Oct/2013:08:42:38 +0000] "GET /aobut.html HTTP/1.1" 404 283

The following query computes the requests made after September 2013 when the
server returned a status code 404 (Not Found) error. It uses a regular expression and
fn:analyze-string to match the components of the log entries. The time format
cannot be cast directly to xs:dateTime, as shown in Example 2. Instead, the
ora-fn:dateTime-from-string-with-format function converts the string to an
instance of xs:dateTime.

import module "oxh:text";

declare variable $REGEX :=
 '(\S+) (\S+) (\S+) \[([^\]]+)\] "([^"]+)" (\S+) (\S+)';

for $line in text:collection("mydata/access.log")
let $match := fn:analyze-string($line, $REGEX)/fn:match
let $time :=
 ora-fn:dateTime-from-string-with-format(
 "dd/MMM/yyyy:HH:mm:ss Z",
 $match/fn:group[4]
)
let $status := $match/fn:group[6]
where
 $status eq "404" and
 $time ge xs:dateTime("2013-10-01T00:00:00")
let $host := $match/fn:group[1]
let $request := $match/fn:group[5]
return
 text:put($host || "," || $request)

The query creates text files that contain the following lines:

192.0.2.1,GET /indexx.html HTTP/1.1
192.0.2.1,GET /aobut.html HTTP/1.1

See Also:

■ XPath and XQuery Functions and Operators 3.0 specification for
information about the fn:tokenize and fn:analyze-string
functions:

http://www.w3.org/TR/xpath-functions-30/#func-tokenize

http://www.w3.org/TR/xpath-functions-30/#func-analyze-str
ing

■ For information about the Apache Common log format:

http://httpd.apache.org/docs/current/logs.html

http://www.w3.org/TR/xpath-functions-30/#func-analyze-string
http://www.w3.org/TR/xpath-functions-30/#func-analyze-string

Tika File Adapter

5-88 Oracle Big Data Connectors User's Guide

Tika File Adapter

This adapter provides functions to parse files stored in HDFS in various formats using
Apache Tika library. It is described in the following topics:

■ Built-in Library Functions for Parsing Files with Tika

■ Custom Functions for Parsing Files with Tika

■ Tika Parser Output Format

■ Tika Adapter Configuration Properties

■ Examples of Tika File Adapter Functions

Tika File Adapter

Oracle XQuery for Hadoop Reference 5-89

Built-in Library Functions for Parsing Files with Tika

To use the built-in functions in your query, you must import the Tika file module as
follows:

import module "oxh:tika";

The Tika file module contains the following functions:

For examples, see "Examples of Tika File Adapter Functions" on page 5-94.

tika:collection
Parses files stored in HDFS in various formats and extracts the content or metadata
from them.

Signature
declare %tika:collection function
 tika:collection($uris as xs:string*) as document-node()* external;

declare %tika:collection function
 function tika:collection($uris as xs:string*, $contentType as xs:string?) as
document-node()* external;

Parameters
$uris: The HDFS file URIs.

$contentType: Specifies the media type of the content to parse, and may have the
charset attribute. When the parameter is specified, then it defines both type and
encoding. When not specified, then Tika will attempt to auto-detect values from the
file extension. Oracle recommends you to specify the parameter.

Returns
Returns a document node for each value. See "Tika Parser Output Format" on
page 5-92.

tika:parse
Parses the data given to it as an argument.For example, it can parse an html fragment
within an XML or JSON document.

Signature
declare function
 tika:parse($data as xs:string?, $contentType as xs:string?) as document-node()*
external;

Parameters
$data: The value to be parsed.

$contentType: Specifies the media type of the content to parse, and may have the
charset attribute. When the parameter is specified, then it defines both type and
encoding. When not specified, then Tika will attempt to auto-detect values from the
file extension. Oracle recommends you to specify the parameter.

Built-in Library Functions for Parsing Files with Tika

5-90 Oracle Big Data Connectors User's Guide

Returns
Returns a document node for each value. See "Tika Parser Output Format" on
page 5-92.

Tika File Adapter

Oracle XQuery for Hadoop Reference 5-91

Custom Functions for Parsing Files with Tika

You can use the following annotations to define functions to parse files in HDFS with
Tika. These annotations provide additional functionality that is not available using the
built-in functions.

5Signature
Custom functions for reading HDFS files must have one of the following signatures:

declare %tika:collection [additional annotations]
 function local:myFunctionName($uris as xs:string*, $contentType as xs:string?)
as document-node()* external;
declare %tika:collection [additional annotations]
 function local:myFunctionName($uris as xs:string*) as document-node()*
external;

5Annotations

%tika:collection(["method"])
Identifies an external function to be implemented by Tika file adapter. Required.

The optional method parameter can be one of the following values:

■ tika: Each line in the tika file is returned as document-node(). Default.

%output:media-type
Declares the file content type. It is a MIME type and must not have the charset attribute
as per XQuery specifications. Optional.

%output:encoding
Declares the file character set. Optional.

5Parameters

$uris as xs:string*
Lists the HDFS file URIs. Required.

$contentType as xs:string?
The file content type. It may have the charset attribute.

5Returns
document-node()* with two root elements. See "Tika Parser Output Format" on
page 5-92.

Note: %output:media-type and %output:econding annotations
specify the content type or encoding when the $contentType
parameter is not explicitly provided in the signature.

Tika Parser Output Format

5-92 Oracle Big Data Connectors User's Guide

Tika Parser Output Format

The result of Tika parsing is a document node with two root elements:

■ Root element #1 is an XHTML content produced by Tika.

■ Root element #2 is the document metadata extracted by Tika.

The format of the root elements look like these:

Root element #1
<html xmlns="http://www.w3.org/1999/xhtml">
...textual content of Tika HTML...
</html>

Root element #2
<tika:metadata xmlns:tika="oxh:tika">
 <tika:property name="Name_1">VALUE_1</tika:property>
 <tika:property name="NAME_2">VALUE_2</tika:property>
</tika:metadata>

Tika File Adapter

Oracle XQuery for Hadoop Reference 5-93

Tika Adapter Configuration Properties

The following Hadoop properties control the behavior of Tika adapter:

oracle.hadoop.xquery.tika.html.asis
Type:Boolean

Default Value: false.

Description: When this is set to TRUE, then all the HTML elements are omitted during
parsing. When this is set to FALSE, then only the safe elements are omitted during
parsing.

oracle.hadoop.xquery.tika.locale
Type:Comma-separated list of strings

Default Value:Not Defined.

Description:Defines the locale to be used by some Tika parsers such as Microsoft
Office document parser. Only three strings are allowed: language, country, and
variant. The strings country and variant are optional. When locale is not defined, then
the system locale is used. When the strings are defined it must correspond to the
java.util.Locale specification format mentioned in
http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html and the
locale can be constructed as follows:

■ If only language is specified, then the locale is constructed from the language.

■ If the language and country are specified, then the locale is constructed from both
language and country

■ If language, country, and variant are specified, then the locale is constructed from
language, country, and variant.

Examples of Tika File Adapter Functions

5-94 Oracle Big Data Connectors User's Guide

Examples of Tika File Adapter Functions

Example 1 Using Built-in Functions to Index PDF documents with Cloudera
Search
This example query uses Tika to parse PDF files into HTML form and then add the
HTML documents into Solr’s full-text index.

bigdata.pdf

The following query indexes the HDFS files:

import module "oxh:tika";
import module "oxh:solr";

for $doc in tika:collection("*bigdata*.pdf")
let $docid := data($doc//*:meta[@name eq "resourceName"]/@content)[1]
let $body := $doc//*:body[1]
return
 solr:put(
 <doc>
 <field name="id">{ $docid }</field>
 <field name="text">{ string($body) }</field>
 <field name="content">{ serialize($doc/*:html) }</field>
 </doc>
)

The HTML representation of the documents is added to Solr index and they become
searchable. Each document Id in the index is the file name.

Example 2 Using Built-in Functions to Index HTML documents with Cloudera
Search
This example query uses sequence files and Tika to parse, where key is an URL and
value is a html.

import module "oxh:tika";
import module "oxh:solr";
import module "oxh:seq";

for $doc in seq:collection-tika(“/path/to/seq/files/*")
let $docid := document-uri($doc)
let $body := $doc//*:body[1]
return
 solr:put(
 <doc>
 <field name="id">{ $docid }</field>
 <field name="text">{ string($body) }</field>
 <field name="content">{ serialize($doc/*:html) }</field>
 </doc>
)

The HTML representation of the documents is added to Solr index and they become
searchable. Each document Id in the index is the file name.

XML File Adapter

Oracle XQuery for Hadoop Reference 5-95

XML File Adapter

The XML file adapter provides access to XML files stored in HDFS. The adapter
optionally splits individual XML files so that a single file can be processed in parallel
by multiple tasks.

This adapter is described in the following topics:

■ Built-in Functions for Reading XML Files

■ Custom Functions for Reading XML Files

■ Examples of XML File Adapter Functions

Built-in Functions for Reading XML Files

5-96 Oracle Big Data Connectors User's Guide

Built-in Functions for Reading XML Files

To use the built-in functions in your query, you must import the XML file module as
follows:

import module "oxh:xmlf";

The XML file module contains the following functions:

■ xmlf:collection (Single Task)

■ xmlf:collection (Multiple Tasks)

See "Examples of XML File Adapter Functions" on page 5-101.

xmlf:collection (Single Task)
Accesses a collection of XML documents in HDFS. Multiple files can be processed
concurrently, but each individual file is parsed by a single task.

This function automatically decompresses files compressed with a Hadoop-supported
codec.

Signature
declare %xmlf:collection function
 xmlf:collection($uris as xs:string*) as document-node()* external;

Parameters
$uris: The XML file URIs

Returns
One XML document for each file

xmlf:collection (Multiple Tasks)
Accesses a collection of XML documents in HDFS. The files might be split and
processed by multiple tasks simultaneously, which enables very large XML files to be
processed efficiently. The function returns only elements that match a specified name.

This function does not automatically decompress files. It only supports XML files that
meet certain requirements. See "Restrictions on Splitting XML Files" on page 5-99.

5Signature
declare %xmlf:collection function
 xmlf:collection($uris as xs:string*, $names as xs:anyAtomicType+) as element()*
external;

5Parameters

$uris
The XML file URIs

Note: HDFS does not perform well when data is stored in many
small files. For large data sets with many small XML documents, use
Hadoop sequence files and the Sequence File Adapter.

XML File Adapter

Oracle XQuery for Hadoop Reference 5-97

$names
The names of the elements to be returned by the function. The names can be either
strings or QNames. For QNames, the XML parser uses the namespace binding implied
by the QName prefix and namespace.

5Returns
Each element that matches one of the names specified by the $names argument

Custom Functions for Reading XML Files

5-98 Oracle Big Data Connectors User's Guide

Custom Functions for Reading XML Files

You can use the following annotations to define functions that read collections of XML
files in HDFS. These annotations provide additional functionality that is not available
using the built-in functions.

5Signature
Custom functions for reading XML files must have one of the following signatures:

declare %xmlf:collection [additional annotations]
 function local:myFunctionName($uris as xs:string*) as node()* external;

declare %xmlf:collection [additional annotations]
 function local:myFunctionName($uris as xs:string*, $names as xs:anyAtomicType+)
as element()* external;

5Annotations

%xmlf:collection
Declares the collection function. This annotation does not accept parameters. Required.

%xmlf:split("element-name1"[,... "element-nameN")
Specifies the element names used for parallel XML parsing. You can use this
annotation instead of the $names argument.

When this annotation is specified, only the single-argument version of the function is
allowed. This restriction enables the element names to be specified statically, so they
do not need to be specified when the function is called.

%output:encoding("charset")
Identifies the text encoding of the input documents.

When this encoding is used with the %xmlf:split annotation or the $names argument,
only ISO-8859-1, US-ASCII, and UTF-8 are valid encodings. Otherwise, the valid
encodings are those supported by the JVM. UTF-8 is assumed when this annotation is
omitted.

%xmlf:split-namespace("prefix", "namespace")
This annotation provides extra namespace declarations to the parser. You can specify it
multiple times to declare one or more namespaces.

Use this annotation to declare the namespaces of ancestor elements. When XML is
processed in parallel, only elements that match the specified names are processed by
an XML parser. If a matching element depends on the namespace declaration of one of
its ancestor elements, then the declaration is not visible to the parser and an error may
occur.

These namespace declarations can also be used in element names when specifying the
split names. For example:

declare
 %xmlf:collection

See Also: "Supported Encodings" in the Oracle Java SE
documentation at

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/e
ncoding.doc.html

http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html
http://docs.oracle.com/javase/7/docs/technotes/guides/intl/encoding.doc.html

XML File Adapter

Oracle XQuery for Hadoop Reference 5-99

 %xmlf:split("eg:foo")
 %xmlf:split-namespace("eg", "http://example.org")
 function local:myFunction($uris as xs:string*) as document-node() external;

%xmlf:split-entity("entity-name", "entity-value")
Provides entity definitions to the XML parser. When XML is processed in parallel, only
elements that match the specified split names are processed by an XML parser. The
DTD of an input document that is split and processed in parallel is not processed.

In this example, the XML parser expands &foo; entity references as "Hello World":

%xmlf:split-entity("foo","Hello World")

%xmlf:split-max("split-size")
Specifies the maximum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-min, min($split-max, $block-size)). Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit).These qualifiers are not case
sensitive. The following examples are equivalent:

%xmlf:split-max(1024)
%xmlf:split-max("1024")
%xmlf:split-max("1K")

%xmlf:split-min("split-size")
Specifies the minimum split size as either an integer or a string value. The split size
controls how the input file is divided into tasks. Hadoop calculates the split size as
max($split-min, min($split-max, $block-size)). Optional.

In a string value, you can append K, k, M, m, G, or g to the value to indicate kilobytes,
megabytes, or gigabytes instead of bytes (the default unit). These qualifiers are not
case sensitive. The following examples are equivalent:

%xmlf:split-min(1024)
%xmlf:split-min("1024")
%xmlf:split-min("1K")

5Notes

Restrictions on Splitting XML Files
Individual XML documents can be processed in parallel when the element names are
specified using either the $names argument or the $xmlf:split annotation.

The input documents must meet the following constraints to be processed in parallel:

■ XML cannot contain a comment, CDATA section, or processing instruction that
contains text that matches one of the specified element names (that is, a < character
followed by a name that expands to a QName). Otherwise, such content might be
parsed incorrectly as an element.

■ An element in the file that matches a specified element name cannot contain a
descendant element that also matches a specified name. Otherwise, multiple
processors might pick up the matching descendant and cause the function to
produce incorrect results.

■ An element that matches one of the specified element names (and all of its
descendants) must not depend on the namespace declarations of any of its
ancestors. Because the ancestors of a matching element are not parsed, the
namespace declarations in these elements are not processed.

Custom Functions for Reading XML Files

5-100 Oracle Big Data Connectors User's Guide

You can work around this limitation by manually specifying the namespace
declarations with the %xmlf:split-namespace annotation.

Oracle recommends that the specified element names do not match elements in the file
that are bigger than the split size. If they do, then the adapter functions correctly but
not efficiently.

Processing XML in parallel is difficult, because parsing cannot begin in the middle of
an XML file. XML constructs like CDATA sections, comments, and namespace
declarations impose this limitation. A parser starting in the middle of an XML
document cannot assume that, for example, the string <foo> is a begin element tag,
without searching backward to the beginning of the document to ensure that it is not
in a CDATA section or a comment. However, large XML documents typically contain
sequences of similarly structured elements and thus are amenable to parallel
processing. If you specify the element names, then each task works by scanning a
portion of the document for elements that match one of the specified names. Only
elements that match a specified name are given to a true XML parser. Thus, the
parallel processor does not perform a true parse of the entire document.

XML File Adapter

Oracle XQuery for Hadoop Reference 5-101

Examples of XML File Adapter Functions

Example 1 Using Built-in Functions to Query XML Files
This example queries three XML files in HDFS with the following contents. Each XML
file contains comments made by users on a specific day. Each comment can have zero
or more "likes" from other users.

mydata/comments1.xml

<comments date="2013-12-30">
 <comment id="12345" user="john" text="It is raining :("/>
 <comment id="56789" user="kelly" text="I won the lottery!">
 <like user="john"/>
 <like user="mike"/>
 </comment>
</comments>

mydata/comments2.xml

<comments date="2013-12-31">
 <comment id="54321" user="mike" text="Happy New Year!">
 <like user="laura"/>
 </comment>
</comments>

mydata/comments3.xml

<comments date="2014-01-01">
 <comment id="87654" user="mike" text="I don't feel so good."/>
 <comment id="23456" user="john" text="What a beautiful day!">
 <like user="kelly"/>
 <like user="phil"/>
 </comment>
</comments>

This query writes the number of comments made each year to a text file. No element
names are passed to xmlf:collection, and so it returns three documents, one for each
file. Each file is processed serially by a single task.

import module "oxh:xmlf";
import module "oxh:text";

for $comments in xmlf:collection("mydata/comments*.xml")/comments
let $date := xs:date($comments/@date)
group by $year := fn:year-from-date($date)
return
 text:put($year || ", " || fn:count($comments/comment))

The query creates text files that contain the following lines:

2013, 3
2014, 2

The next query writes the number of comments and the average number of likes for
each user. Each input file is split, so that it can be processed in parallel by multiple
tasks. The xmlf:collection function returns five elements, one for each comment.

import module "oxh:xmlf";
import module "oxh:text";

Examples of XML File Adapter Functions

5-102 Oracle Big Data Connectors User's Guide

for $comment in xmlf:collection("mydata/comments*.xml", "comment")
let $likeCt := fn:count($comment/like)
group by $user := $comment/@user
return
 text:put($user || ", " || fn:count($comment) || ", " || fn:avg($likeCt))

This query creates text files that contain the following lines:

john, 2, 1
kelly, 1, 2
mike, 2, 0.5

Example 2 Writing a Custom Function to Query XML Files
The following example declares a custom function to access XML files:

import module "oxh:text";

declare
 %xmlf:collection
 %xmlf:split("comment")
 %xmlf:split-max("32M")
function local:comments($uris as xs:string*) as element()* external;

for $c in local:comments("mydata/comment*.xml")
where $c/@user eq "mike"
return text:put($c/@id)

The query creates a text file that contains the following lines:

54321
87654

Utility Module

Oracle XQuery for Hadoop Reference 5-103

Utility Module

The utility module contains ora-fn functions for handling strings and dates. These
functions are defined in XDK XQuery, whereas the oxh functions are specific to Oracle
XQuery for Hadoop.

The utility functions are described in the following topics:

■ Duration, Date, and Time Functions

■ String Functions

Duration, Date, and Time Functions

5-104 Oracle Big Data Connectors User's Guide

Duration, Date, and Time Functions

These functions are in the http://xmlns.oracle.com/xdk/xquery/function
namespace. The ora-fn prefix is predeclared and the module is automatically
imported.

The following functions are built in to Oracle XQuery for Hadoop:

■ ora-fn:date-from-string-with-format

■ ora-fn:date-to-string-with-format

■ ora-fn:dateTime-from-string-with-format

■ ora-fn:dateTime-to-string-with-format

■ ora-fn:time-from-string-with-format

■ ora-fn:time-to-string-with-format

ora-fn:date-from-string-with-format
Returns a new date value from a string according to the specified pattern.

Signature
ora-fn:date-from-string-with-format($format as xs:string?, $dateString as
xs:string?, $locale as xs:string*) as xs:date?

ora-fn:date-from-string-with-format($format as xs:string?, $dateString as
xs:string?) as xs:date?

Parameters
$format: The pattern; see "Format Argument" on page 5-107

$dateString: An input string that represents a date

$locale: A one- to three-field value that represents the locale; see "Locale Argument"
on page 5-107

Example
This example returns the specified date in the current time zone:

ora-fn:date-from-string-with-format("yyyy-MM-dd G", "2013-06-22 AD")

ora-fn:date-to-string-with-format
Returns a date string with the specified pattern.

Signature
ora-fn:date-to-string-with-format($format as xs:string?, $date as xs:date?,
*$locale as xs:string?) as xs:string?

ora-fn:date-to-string-with-format($format as xs:string?, $date as xs:date?) as
xs:string?

Parameters
$format: The pattern; see "Format Argument" on page 5-107

$date: The date

Utility Module

Oracle XQuery for Hadoop Reference 5-105

$locale: A one- to three-field value that represents the locale; see "Locale Argument"
on page 5-107

Example
This example returns the string 2013-07-15:

ora-fn:date-to-string-with-format("yyyy-mm-dd", xs:date("2013-07-15"))

ora-fn:dateTime-from-string-with-format
Returns a new date-time value from an input string according to the specified pattern.

Signature
ora-fn:dateTime-from-string-with-format($format as xs:string?, $dateTimeString as
xs:string?, $locale as xs:string?) as xs:dateTime?

ora-fn:dateTime-from-string-with-format($format as xs:string?, $dateTimeString as
xs:string?) as xs:dateTime?

Parameters
$format: The pattern; see "Format Argument" on page 5-107

$dateTimeString: The date and time

$locale: A one- to three-field value that represents the locale; see "Locale Argument"
on page 5-107

Examples
This example returns the specified date and 11:04:00AM in the current time zone:

ora-fn:dateTime-from-string-with-format("yyyy-MM-dd 'at' hh:mm", "2013-06-22 at
11:04")

The next example returns the specified date and 12:00:00AM in the current time zone:

ora-fn:dateTime-from-string-with-format("yyyy-MM-dd G", "2013-06-22 AD")

ora-fn:dateTime-to-string-with-format
Returns a date and time string with the specified pattern.

Signature
ora-fn:dateTime-to-string-with-format($format as xs:string?, $dateTime as
xs:dateTime?, $locale as xs:string?) as xs:string?

ora-fn:dateTime-to-string-with-format($format as xs:string?, $dateTime as
xs:dateTime?) as xs:string?

Parameters
$format: The pattern; see "Format Argument" on page 5-107

$dateTime: The date and time

$locale: A one- to three-field value that represents the locale; see "Locale Argument"
on page 5-107

Examples
This example returns the string 07 JAN 2013 10:09 PM AD:

Duration, Date, and Time Functions

5-106 Oracle Big Data Connectors User's Guide

ora-fn:dateTime-to-string-with-format("dd MMM yyyy hh:mm a G",
xs:dateTime("2013-01-07T22:09:44"))

The next example returns the string "01-07-2013":

ora-fn:dateTime-to-string-with-format("MM-dd-yyyy",
xs:dateTime("2013-01-07T22:09:44"))

ora-fn:time-from-string-with-format
Returns a new time value from an input string according to the specified pattern.

Signature
ora-fn:time-from-string-with-format($format as xs:string?, $timeString as
xs:string?, $locale as xs:string?) as xs:time?

ora-fn:time-from-string-with-format($format as xs:string?, $timeString as
xs:string?) as xs:time?

Parameters
$format: The pattern; see "Format Argument" on page 5-107

$timeString: The time

$locale: A one- to three-field value that represents the locale; see "Locale Argument"
on page 5-107

Example
This example returns 9:45:22 PM in the current time zone:

ora-fn:time-from-string-with-format("HH.mm.ss", "21.45.22")

The next example returns 8:07:22 PM in the current time zone:

fn-bea:time-from-string-with-format("hh:mm:ss a", "8:07:22 PM")

ora-fn:time-to-string-with-format
Returns a time string with the specified pattern.

Signature
ora-fn:time-to-string-with-format($format as xs:string?, $time as xs:time?,
$locale as xs:string?) as xs:string?

ora-fn:time-to-string-with-format($format as xs:string?, $time as xs:time?) as
xs:string?

Parameters
$format: The pattern; see "Format Argument" on page 5-107

$time: The time

$locale: A one- to three-field value that represents the locale; see "Locale Argument"
on page 5-107

Examples
This example returns the string "10:09 PM":

ora-fn:time-to-string-with-format("hh:mm a", xs:time("22:09:44"))

Utility Module

Oracle XQuery for Hadoop Reference 5-107

The next example returns the string "22:09 PM":

ora-fn:time-to-string-with-format("HH:mm a", xs:time("22:09:44"))

Format Argument
The $format argument identifies the various fields that compose a date or time value.

Locale Argument
The $locale represents a specific geographic, political, or cultural region defined by
up to three fields:

1. Language code: The ISO 639 alpha-2 or alpha-3 language code, or the registered
language subtags of up to eight letters. For example, en for English and ja for
Japanese.

2. Country code: The ISO 3166 alpha-2 country code or the UN M.49 numeric-3 area
code. For example, US for the United States and 029 for the Caribbean.

3. Variant: Indicates a variation of the locale, such as a particular dialect. Order
multiple values in order of importance and separate them with an underscore (_).
These values are case sensitive.

See Also: The SimpleDateFormat class in the Java Standard Edition 7
Reference at

http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDat
eFormat.html

See Also:

■ The locale class in Java Standard Edition 7 Reference at

http://docs.oracle.com/javase/7/docs/api/java/util/Locale
.html

■ All language, country, and variant codes in the Internet Assigned
Numbers Authority (IANA) Language Subtag Registry at

http://www.iana.org/assignments/language-subtag-registry/
language-subtag-registry

http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html
http://docs.oracle.com/javase/7/docs/api/java/util/Locale.html
http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html

String Functions

5-108 Oracle Big Data Connectors User's Guide

String Functions

These functions are in the http://xmlns.oracle.com/xdk/xquery/function
namespace. The ora-fn prefix is predeclared and the module is automatically
imported.

The following functions are built in to Oracle XQuery for Hadoop:

■ ora-fn:pad-left

■ ora-fn:pad-right

■ ora-fn:trim

■ ora-fn:trim-left

■ ora-fn:trim-right

ora-fn:pad-left
Adds padding characters to the left of a string to create a fixed-length string. If the
input string exceeds the specified size, then it is truncated to return a substring of the
specified length.

The default padding character is a space (ASCII 32).

Signature
ora-fn:pad-left($str as xs:string?, $size as xs:integer?, $pad as xs:string?) as
xs:string?

ora-fn:pad-left($str as xs:string?, $size as xs:integer?) as xs:string?

Parameters
$str: The input string

$size: The desired fixed length, which is obtained by adding padding characters to
$str

$pad: The padding character

If either argument is an empty sequence, then the function returns an empty sequence.

Examples
This example prefixes "01" to the input string up to the maximum of six characters.
The returned string is "010abc". The function returns one complete and one partial pad
character.

ora-fn:pad-left("abc", 6, "01")

The example returns only "ab" because the input string exceeds the specified fixed
length:

ora-fn:pad-left("abcd", 2, "01")

This example prefixes spaces to the string up to the specified maximum of six
characters. The returned string has two spaces: " abcd":

ora-fn:pad-left("abcd", 6)

The next example returns only "ab" because the input string exceeds the specified fixed
length:

Utility Module

Oracle XQuery for Hadoop Reference 5-109

ora-fn:pad-left("abcd", 2)

ora-fn:pad-right
Adds padding characters to the right of a string to create a fixed-length string. If the
input string exceeds the specified size, then it is truncated to return a substring of the
specified length.

The default padding character is a space (ASCII 32).

Signature
ora-fn:pad-right($str as xs:string?, $size as xs:integer?, $pad as xs:string?) as
xs:string?

ora-fn:pad-right($str as xs:string?, $size as xs:integer?) as xs:string?

Parameters
$str: The input string

$size: The desired fixed length, which is obtained by adding padding characters to
$str

$pad: The padding character

If either argument is an empty sequence, then the function returns an empty sequence.

Examples
This example appends "01" to the input string up to the maximum of six characters.
The returned string is "abc010". The function returns one complete and one partial pad
character.

ora-fn:pad-right("abc", 6, "01")

This example returns only "ab" because the input string exceeds the specified fixed
length:

ora-fn:pad-right("abcd", 2, "01")

This example appends spaces to the string up to the specified maximum of six
characters. The returned string has two spaces: "abcd ":

ora-fn:pad-right("abcd", 6)

The next example returns only "ab" because the input string exceeds the specified fixed
length:

ora-fn:pad-right("abcd", 2)

ora-fn:trim
Removes any leading or trailing white space from a string.

Signature
ora-fn:trim($input as xs:string?) as xs:string?

Parameters
$input: The string to trim. If $input is an empty sequence, then the function returns an
empty sequence. Other data types trigger an error.

String Functions

5-110 Oracle Big Data Connectors User's Guide

Example
This example returns the string "abc":

ora-fn:trim(" abc ")

ora-fn:trim-left
Removes any leading white space.

Signature
ora-fn:trim-left($input as xs:string?) as xs:string?

Parameters
$input: The string to trim. If $input is an empty sequence, then the function returns an
empty sequence. Other data types trigger an error.

Example
This example removes the leading spaces and returns the string "abc ":

ora-fn:trim-left(" abc ")

ora-fn:trim-right
Removes any trailing white space.

Signature
ora-fn:trim-right($input as xs:string?) as xs:string?

Parameters
$input: The string to trim. If $input is an empty sequence, then the function returns an
empty sequence. Other data types trigger an error.

Example
This example removes the trailing spaces and returns the string " abc":

ora-fn:trim-left(" abc ")

Hadoop Module

Oracle XQuery for Hadoop Reference 5-111

Hadoop Module

These functions are in the http://xmlns.oracle.com/hadoop/xquery namespace. The
oxh prefix is predeclared and the module is automatically imported.

The Hadoop module is described in the following topic:

■ Hadoop Functions

Built-in Functions for Using Hadoop

5-112 Oracle Big Data Connectors User's Guide

Built-in Functions for Using Hadoop

The following functions are built in to Oracle XQuery for Hadoop:

■ oxh:find

■ oxh:increment-counter

■ oxh:println

■ oxh:println-xml

■ oxh:property

oxh:find
Returns a sequence of file paths that match a pattern.

Signature
oxh:find($pattern as xs:string?) as xs:string*

Parameters
$pattern: The file pattern to search for

oxh:increment-counter
Increments a user-defined MapReduce job counter. The default increment is one (1).

Signature
oxh:increment-counter($groupName as xs:string, $counterName as xs:string, $value
as xs:integer

oxh:increment-counter($groupName as xs:string, $counterName as xs:string

Parameters
$groupName: The group of counters that this counter belongs to.

$counterName: The name of a user-defined counter

$value: The amount to increment the counter

oxh:println
Prints a line of text to stdout of the Oracle XQuery for Hadoop client process. Use this
function when developing queries.

Signature
declare %updating function oxh:println($arg as xs:anyAtomicType?)

Parameters
$arg: A value to add to the output. A cast operation first converts it to string. An
empty sequence is handled the same way as an empty string.

See Also: For the file pattern, the globStatus method in the Apache
Hadoop API at

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/
fs/FileSystem.html#globStatus(org.apache.hadoop.fs.Path)

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/FileSystem.html#globStatus(org.apache.hadoop.fs.Path)
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/fs/FileSystem.html#globStatus(org.apache.hadoop.fs.Path)

Hadoop Module

Oracle XQuery for Hadoop Reference 5-113

Example
This example prints the values of data.txt to stdout:

for $i in text:collection("data.txt")
return oxh:println($i)

oxh:println-xml
Prints a line of text or XML to stdout of the Oracle XQuery for Hadoop client process.
Use this function when developing queries and printing nodes of an XML document.

Signature
declare %updating function oxh:println-xml($arg as item()?)

Parameters
$arg: A value to add to the output. The input item is converted into a text as defined
by XSLT 2.0 and XQuery 1.0 Serialization specifications. An empty sequence is
handled the same way as an empty string.

oxh:property
Returns the value of a Hadoop configuration property.

Signature
oxh:property($name as xs:string?) as xs:string?

Parameters
$name: The configuration property

Serialization Annotations

5-114 Oracle Big Data Connectors User's Guide

Serialization Annotations

Several adapters have serialization annotations (%output:*). The following lists
identify the serialization parameters that Oracle XQuery for Hadoop supports.

Serialization parameters supported for the text output method:

■ encoding: Any encoding supported by the JVM

■ normalization-form: none, NFC, NFD, NFKC, NFKD

Serialization parameters supported for the xml output method, using any values
permitted by the XQuery specification:

■ cdata-section-elements

■ doctype-public

■ doctype-system

■ encoding

■ indent

■ normalization-form

■ omit-xml-declaration

■ standalone

See Also: "The Influence of Serialization Parameters" sections for
XML and text output methods in XSLT and XQuery Serialization, at
locations like the following:

http://www.w3.org/TR/xslt-xquery-serialization/#XML_DOCTYPE

http://www.w3.org/TR/xslt-xquery-serialization/#XML_
CDATA-SECTION-ELEMENTS

http://www.w3.org/TR/xslt-xquery-serialization/#XML_DOCTYPE
http://www.w3.org/TR/xslt-xquery-serialization/#XML_CDATA-SECTION-ELEMENTS
http://www.w3.org/TR/xslt-xquery-serialization/#XML_CDATA-SECTION-ELEMENTS

6

Oracle XML Extensions for Hive 6-1

6Oracle XML Extensions for Hive

This chapter explains how to use the XML extensions for Apache Hive provided with
Oracle XQuery for Hadoop. The chapter contains the following sections:

■ What are the XML Extensions for Hive?

■ Using the Hive Extensions

■ About the Hive Functions

■ Creating XML Tables

■ Oracle XML Functions for Hive Reference

What are the XML Extensions for Hive?
The XML Extensions for Hive provide XML processing support that enables you to do
the following:

■ Query large XML files in HDFS as Hive tables

■ Query XML strings in Hive tables

■ Query XML file resources in the Hadoop distributed cache

■ Efficiently extract atomic values from XML without using expensive DOM parsing

■ Retrieve, generate, and transform complex XML elements

■ Generate multiple table rows from a single XML value

■ Manage missing and dirty data in XML

The XML extensions also support these W3C modern standards:

■ XQuery 1.0

■ XQuery Update Facility 1.0 (transform expressions)

■ XPath 2.0

■ XML Schema 1.0

■ XML Namespaces

The XML extensions have two components:

■ XML InputFormat and SerDe for creating XML tables

See "Creating XML Tables" on page 6-3.

■ XML function library

See "About the Hive Functions" on page 6-3.

Using the Hive Extensions

6-2 Oracle Big Data Connectors User's Guide

Using the Hive Extensions
To enable the Oracle XQuery for Hadoop extensions, use the --auxpath and -i
arguments when starting Hive:

$ hive --auxpath $OXH_HOME/hive/lib -i $OXH_HOME/hive/init.sql

The first time you use the extensions, verify that they are accessible. The following
procedure creates a table named SRC, loads one row into it, and calls the xml_query
function.

To verify that the extensions are accessible:

1. Log in to a server in the Hadoop cluster where you plan to work.

2. Create a text file named src.txt that contains one line:

$ echo "XXX" > src.txt

3. Start the Hive command-line interface (CLI):

$ hive --auxpath $OXH_HOME/hive/lib -i $OXH_HOME/hive/init.sql

The init.sql file contains the CREATE TEMPORARY FUNCTION statements that
declare the XML functions.

4. Create a simple table:

hive> CREATE TABLE src(dummy STRING);

The SRC table is needed only to fulfill a SELECT syntax requirement. It is like the
DUAL table in Oracle Database, which is referenced in SELECT statements to test
SQL functions.

5. Load data from src.txt into the table:

hive> LOAD DATA LOCAL INPATH 'src.txt' OVERWRITE INTO TABLE src;

6. Query the table using Hive SELECT statements:

hive> SELECT * FROM src;
OK
xxx

7. Call an Oracle XQuery for Hadoop function for Hive. This example calls the xml_
query function to parse an XML string:

hive> SELECT xml_query("x/y", "<x><y>123</y><z>456</z></x>") FROM src;
 .
 .
 .
["123"]

Note: The --auxpath argument sets the value of HIVE_AUX_JARS_
PATH. The value of HIVE_AUX_JARS_PATH can be either a single
directory or a comma-delimited list of JAR files. If your Hive
configuration has set the value of HIVE_AUX_JARS_PATH by default to a
list of JARs then you must add the JARs in $OXH_HOME/hive/lib to the
list individually. That is, the list can not contain directories. However,
on the Oracle BigDataLite VM, HIVE_AUX_JARS_PATH contains the Hive
extensions by default and hence specifying --auxpath is unnecessary.

Creating XML Tables

Oracle XML Extensions for Hive 6-3

If the extensions are accessible, then the query returns ["123"], as shown in the
example.

About the Hive Functions
The Oracle XQuery for Hadoop extensions enable you to query XML strings in Hive
tables and XML file resources in the Hadoop distributed cache. These are the
functions:

■ xml_query: Returns the result of a query as an array of STRING values.

■ xml_query_as_primitive: Returns the result of a query as a Hive primitive value.
Each Hive primitive data type has a separate function named for it.

■ xml_exists: Tests if the result of a query is empty

■ xml_table: Maps an XML value to zero or more table rows, and enables nested
repeating elements in XML to be mapped to Hive table rows.

See "Oracle XML Functions for Hive Reference" on page 6-11.

Creating XML Tables
This section describes how you can use the Hive CREATE TABLE statement to create
tables over large XML documents.

Hive queries over XML tables scale well, because Oracle XQuery for Hadoop splits up
the XML so that the MapReduce framework can process it in parallel.

To support scalable processing and operate in the MapReduce framework, the table
adapter scans for elements to use to create table rows. It parses only the elements that
it identifies as being part of the table; the rest of the XML is ignored. Thus, the XML
table adapter does not perform a true parse of the entire XML document, which
imposes limitations on the input XML. Because of these limitations, you can create
tables only over XML documents that meet the constraints listed in "XQuery
Transformation Requirements" on page 4-6. Otherwise, you might get errors or
incorrect results.

Hive CREATE TABLE Syntax for XML Tables
The following is the basic syntax of the Hive CREATE TABLE statement for creating a
Hive table over XML files:

CREATE TABLE table_name (columns)
ROW FORMAT
 SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
 INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
 OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES(configuration)

Parameters

columns
All column types in an XML table must be one of the Hive primitive types given in
"Data Type Conversions" on page 6-12.

Creating XML Tables

6-4 Oracle Big Data Connectors User's Guide

configuration
Any of the properties described in "CREATE TABLE Configuration Properties" on
page 6-4. Separate multiple properties with commas.

CREATE TABLE Configuration Properties
Use these configuration properties in the configuration parameter of the CREATE
TABLE command.

oxh-default-namespace
Sets the default namespace for expressions in the table definition and for XML parsing.
The value is a URI.

This example defines the default namespace:

"oxh-default-namespace" = "http://example.com/foo"

oxh-charset
Specifies the character encoding of the XML files. The supported encodings are UTF-8
(default), ISO-8859-1, and US-ASCII.

All XML files for the table must share the same character encoding. Any encoding
declarations in the XML files are ignored.

This example defines the character set:

"oxh-charset" = "ISO-8859-1"

oxh-column.name
Specifies how an element selected by the oxh-elements property is mapped to
columns in a row. In this property name, replace name with the name of a column in
the table. The value can be any XQuery expression. The initial context item of the
expression (the "." variable) is bound to the selected element.

Check the log files even when a query executes successfully. If a column expression
returns no value or raises a dynamic error, the column value is NULL. The first time an
error occurs, it is logged and query processing continues. Subsequent errors raised by
the same column expression are not logged.

Any column of the table that does not have a corresponding oxh-column property
behaves as if the following property is specified:

"oxh-column.name" = "(./name | ./@name)[1]"

Thus, the default behavior is to select the first child element or attribute that matches
the table column name. See "Syntax Example" on page 6-5.

oxh-elements
Identifies the names of elements in the XML that map to rows in the table, in a
comma-delimited list. This property must be specified one time. Required.

This example maps each element named foo in the XML to a single row in the Hive
table:

"oxh-elements" = "foo"

The next example maps each element named either foo or bar in the XML to a row in
the Hive table:

Note: Inserting data into XML tables is not supported.

Creating XML Tables

Oracle XML Extensions for Hive 6-5

"oxh-elements" = "foo, bar"

oxh-entity.name
Defines a set of entity reference definitions.

In the following example, entity references in the XML are expanded from &foo; to
"foo value" and from &bar; to "bar value".

"oxh-entity.foo" = "foo value"
"oxh-entity.bar" = "bar value"

oxh-namespace.prefix
Defines a namespace binding.

This example binds the prefix myns to the namespace http://example.org:

"oxh-namespace.myns" = "http://example.org"

You can use this property multiple times to define additional namespaces. The
namespace definitions are used when parsing the XML. The oxh-element and
oxh-column property values can also reference them.

In the following example, only foo elements in the http://example.org namespace
are mapped to table rows:

"oxh-namespace.myns" = "http://example.org",
"oxh-elements" = "myns:foo",
"oxh-column.bar" = "./myns:bar"

CREATE TABLE Examples
This section includes the following examples:

■ Syntax Example

■ Simple Examples

■ OpenStreetMap Examples

Syntax Example
This example shows how to map XML elements to column names.

Example 1 Basic Column Mappings
In the following table definition, the oxh-elements property specifies that each
element named foo in the XML is mapped to a single row in the table. The oxh-column
properties specify that a Hive table column named BAR gets the value of the child
element named bar converted to STRING, and the column named ZIP gets the value of
the child element named zip converted to INT.

CREATE TABLE example (bar STRING, zip INT)
ROW FORMAT
 SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
 INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
 OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES(
 "oxh-elements" = "foo",
 "oxh-column.bar" = "./bar",
 "oxh-column.zip" = "./zip"
)

Creating XML Tables

6-6 Oracle Big Data Connectors User's Guide

Example 2 Conditional Column Mappings
In this modified definition of the ZIP column, the column receives a value of -1 if the
foo element does not have a child zip element, or if the zip element contains a
nonnumeric value:

"oxh-column.zip" = "
 if (./zip castable as xs:int) then
 xs:int(./zip)
 else
 -1
"

Example 3 Default Column Mappings
The following two table definitions are equivalent. Table Definition 2 relies on the
default mappings for the BAR and ZIP columns.

Table Definition 1

CREATE TABLE example (bar STRING, zip INT)
ROW FORMAT
 SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
 INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
 OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES(
 "oxh-elements" = "foo",
 "oxh-column.bar" = "(./bar | ./@bar)[1]",
 "oxh-column.zip" = "(./zip | ./@zip)[1]"
)

Table Definition 2

CREATE TABLE example (bar STRING, zip INT)
ROW FORMAT
 SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
 INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
 OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES(
 "oxh-elements" = "foo"
)

Simple Examples
These examples show how to create Hive tables over a small XML document that
contains comments posted by users of a fictitious website. Each comment element in the
document has one or more like elements that indicate that the user liked the
comment.

<comments>
 <comment id="12345" user="john" text="It is raining :("/>
 <comment id="56789" user="kelly" text="I won the lottery!">
 <like user="john"/>
 <like user="mike"/>
 </comment>
 <comment id="54321" user="mike" text="Happy New Year!">
 <like user="laura"/>
 </comment>
</comments>

Creating XML Tables

Oracle XML Extensions for Hive 6-7

In the CREATE TABLE examples, the comments.xml input file is in the current working
directory of the local file system.

Example 1 Creating a Table
The following Hive CREATE TABLE command creates a table named COMMENTS with a
row for each comment containing the user names, text, and number of likes:

hive>
CREATE TABLE comments (usr STRING, content STRING, likeCt INT)
ROW FORMAT
 SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
 INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
 OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES(
 "oxh-elements" = "comment",
 "oxh-column.usr" = "./@user",
 "oxh-column.content" = "./@text",
 "oxh-column.likeCt" = "fn:count(./like)"
);

The Hive LOAD DATA command loads comments.xml into the COMMENTS table. See
"Simple Examples" on page 6-6 for the contents of the file.

hive> LOAD DATA LOCAL INPATH 'comments.xml' OVERWRITE INTO TABLE comments;
]
The following query shows the content of the COMMENTS table.

hive> SELECT usr, content, likeCt FROM comments;
 .
 .
 .
john It is raining :(0
kelly I won the lottery! 2
mike Happy New Year! 1

Example 2 Querying an XML Column
This CREATE TABLE command is like Example 1, except that the like elements are
produced as XML in a STRING column.

hive>
CREATE TABLE comments2 (usr STRING, content STRING, likes STRING)
ROW FORMAT
 SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
 INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
 OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES(
 "oxh-elements" = "comment",
 "oxh-column.usr" = "./@user",
 "oxh-column.content" = "./@text",
 "oxh-column.likes" = "fn:serialize(<likes>{./like}</likes>)"
);

The Hive LOAD DATA command loads comments.xml into the table. See "Simple
Examples" on page 6-6 for the contents of the file.

hive> LOAD DATA LOCAL INPATH 'comments.xml' OVERWRITE INTO TABLE comments2;

Creating XML Tables

6-8 Oracle Big Data Connectors User's Guide

The following query shows the content of the COMMENTS2 table.

hive> SELECT usr, content, likes FROM comments2;
 .
 .
 .
john It is raining :(<likes/>
kelly I won the lottery! <likes><like user="john"/><like user="mike"/></likes>
mike Happy New Year! <likes><like user="laura"/></likes>

The next query extracts the user names from the like elements:

hive> SELECT usr, t.user FROM comments2 LATERAL VIEW
> xml_table("likes/like", comments2.likes, struct("./@user")) t AS user;

 .
 .
 .
kelly john
kelly mike
mike laura

Example 3 Generating XML in a Single String Column
This command creates a table named COMMENTS3 with a row for each comment, and
produces the XML in a single STRING column.

hive>
CREATE TABLE comments3 (xml STRING)
ROW FORMAT
 SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
 INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
 OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
TBLPROPERTIES(
 "oxh-elements" = "comment",
 "oxh-column.xml" = "fn:serialize(.)"
);

The Hive LOAD DATA command loads comments.xml into the table. See "Simple
Examples" on page 6-6 for the contents of the file.

hive> LOAD DATA LOCAL INPATH 'comments.xml' OVERWRITE INTO TABLE comments3;

The following query shows the contents of the XML column:

hive> SELECT xml FROM comments3;
 .
 .
 .
<comment id="12345" user="john" text="It is raining :("/>
<comment id="56789" user="kelly" text="I won the lottery!">
 <like user="john"/>
 <like user="mike"/>
</comment>
<comment id="54321" user="mike" text="Happy New Year!">
 <like user="laura"/>
</comment>

The next query extracts the IDs and converts them to integers:

hive> SELECT xml_query_as_int("comment/@id", xml) FROM comments3;
 .
 .

Creating XML Tables

Oracle XML Extensions for Hive 6-9

 .
12345
56789
54321

OpenStreetMap Examples
These examples use data from OpenStreetMap, which provides free map data for the
entire world. You can export the data as XML for specific geographic regions or the
entire planet. An OpenStreetMap XML document mainly contains a sequence of node,
way, and relation elements.

In these examples, the OpenStreetMap XML files are stored in the /user/name/osm
HDFS directory.

Example 1 Creating a Table Over OpenStreetMap XML
This example creates a table over OpenStreetMap XML with one row for each node
element as follows:

■ The id, lat, lon, and user attributes of the node element are mapped to table
columns.

■ The year is extracted from the timestamp attribute and mapped to the YEAR
column. If a node does not have a timestamp attribute, then -1 is used for the year.

■ If the node element has any child tag elements, then they are stored as an XML
string in the TAGS column. If node has no child tag elements, then column value is
NULL.

hive>
CREATE EXTERNAL TABLE nodes (
 id BIGINT,
 latitude DOUBLE,
 longitude DOUBLE,
 year SMALLINT,
 tags STRING
)
ROW FORMAT
 SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
STORED AS
 INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
 OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
LOCATION '/user/name/osm'
TBLPROPERTIES (
 "oxh-elements" = "node",
 "oxh-column.id" = "./@id",
 "oxh-column.latitude" = "./@lat",
 "oxh-column.longitude" = "./@lon",
 "oxh-column.year" = "
 if (fn:exists(./@timestamp)) then
 fn:year-from-dateTime(xs:dateTime(./@timestamp))
 else

See Also:

■ To download OpenStreetMap data, go to

http://www.openstreetmap.org/export

■ For information about the OpenStreetMap XML format, go to

http://wiki.openstreetmap.org/wiki/OSM_XML

Creating XML Tables

6-10 Oracle Big Data Connectors User's Guide

 -1
 ",
 "oxh-column.tags" = "
 if (fn:exists(./tag)) then
 fn:serialize(<tags>{./tag}</tags>)
 else
 ()
 "
);

The following query returns the number of nodes per year:

hive> SELECT year, count(*) FROM nodes GROUP BY year;

This query returns the total number of tags across nodes:

hive> SELECT sum(xml_query_as_int("count(tags/tag)", tags)) FROM nodes;

Example 2
In OpenStreetMap XML, the node, way, and relation elements share a set of common
attributes, such as the user who contributed the data. The next table produces one row
for each node, way, and relation element.

hive>
 CREATE EXTERNAL TABLE osm (
 id BIGINT,
 uid BIGINT,
 type STRING
)
 ROW FORMAT
 SERDE 'oracle.hadoop.xquery.hive.OXMLSerDe'
 STORED AS
 INPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLInputFormat'
 OUTPUTFORMAT 'oracle.hadoop.xquery.hive.OXMLOutputFormat'
 LOCATION '/user/name/osm'
 TBLPROPERTIES (
 "oxh-elements" = "node, way, relation",
 "oxh-column.id" = "./@id",
 "oxh-column.uid" = "./@uid",
 "oxh-column.type" = "./name()"
);

The following query returns the number of node, way, and relation elements. The
TYPE column is set to the name of the selected element, which is either node, way, or
relation.

hive> SELECT type, count(*) FROM osm GROUP BY type;

This query returns the number of distinct user IDs:

hive> SELECT count(*) FROM (SELECT uid FROM osm GROUP BY uid) t;

See Also: For a description of the OpenStreetMap elements and
attributes, go to

http://wiki.openstreetmap.org/wiki/Elements

Oracle XML Functions for Hive Reference

Oracle XML Extensions for Hive 6-11

Oracle XML Functions for Hive Reference

This section describes the Oracle XML Extensions for Hive. It describes the following
commands and functions:

■ xml_exists

■ xml_query

■ xml_query_as_primitive

■ xml_table

Data Type Conversions

6-12 Oracle Big Data Connectors User's Guide

Data Type Conversions

Table 6–1 shows the conversions that occur automatically between Hive primitives
and XML schema types.

Table 6–1 Data Type Equivalents

Hive XML schema

TINYINT xs:byte

SMALLINT xs:short

INT xs:int

BIGINT xs:long

BOOLEAN xs:boolean

FLOAT xs:float

DOUBLE xs:double

STRING xs:string

Oracle XML Functions for Hive Reference

Oracle XML Extensions for Hive 6-13

Hive Access to External Files

The Hive functions have access to the following external file resources:

■ XML schemas

 See http://www.w3.org/TR/xquery/#id-schema-import

■ XML documents

See http://www.w3.org/TR/xpath-functions/#func-doc

■ XQuery library modules

See http://www.w3.org/TR/xquery/#id-module-import

You can address these files by their URI from either HTTP (by using the http://...
syntax) or the local file system (by using the file://... syntax). In this example,
relative file locations are resolved against the local working directory of the task, so
that URIs such as bar.xsd can be used to access files that were added to the distributed
cache:

xml_query("
 import schema namespace tns='http://example.org' at 'bar.xsd';
 validate { ... }
 ",
 .
 .
 .

To access a local file, first add it to the Hadoop distributed cache using the Hive ADD
FILE command. For example:

ADD FILE /local/mydir/thisfile.xsd;

Otherwise, you must ensure that the file is available on all nodes of the cluster, such as
by mounting the same network drive or simply copying the file to every node. The
default base URI is set to the local working directory.

See Also:

■ For examples of accessing the distributed cache, see Example 4 for
xml_query, Example 6 for xml_query_as_primitive, and Example
8 for xml_table.

■ For information about the default base URI, see XQuery 1.0: An
XML Query Language at

http://www.w3.org/TR/xquery/#dt-base-uri

Online Documentation of Functions

6-14 Oracle Big Data Connectors User's Guide

Online Documentation of Functions

You can get online Help for the Hive extension functions by using this command:

DESCRIBE FUNCTION [EXTENDED] function_name;

This example provides a brief description of the xml_query function:

hive> describe function xml_query;
OK
xml_query(query, bindings) - Returns the result of the query as a STRING array

The EXTENDED option provides a detailed description and examples:

hive> describe function extended xml_query;
OK
xml_query(query, bindings) - Returns the result of the query as a STRING array
Evaluates an XQuery expression with the specified bindings. The query argument
must be a STRING and the bindings argument must be a STRING or a STRUCT. If the
bindings argument is a STRING, it is parsed as XML and bound to the initial
context item of the query. For example:

 > SELECT xml_query("x/y", "<x><y>hello</y><z/><y>world</y></x>") FROM src LIMIT
1;
 ["hello", "world"]
 .
 .
 .

xml_exists

Oracle XML Extensions for Hive 6-15

xml_exists

Tests if the result of a query is empty.

6Signature
xml_exists(
 STRING query,
 { STRING | STRUCT } bindings
) as BOOLEAN

6Description

query
An XQuery or XPath expression. It must be a constant value, because it is only read
the first time the function is evaluated. The initial query string is compiled and reused
in all subsequent calls.

You can access files that are stored in the Hadoop distributed cache and HTTP
resources (http://...). Use the XQuery fn:doc function for XML documents, and the
fn:unparsed-text and fn:parsed-text-lines functions to access plain text files.

If an error occurs while compiling the query, the function raises an error. If an error
occurs while evaluating the query, the error is logged (not raised), and an empty array
is returned.

bindings
The input that the query processes. The value can be an XML STRING or a STRUCT of
variable values:

■ STRING: The string is bound to the initial context item of the query as XML.

■ STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a
variable binding (name, value) for the query. The name fields must be type STRING,
and the value fields can be any supported primitive. See "Data Type Conversions"
on page 6-12.

6Return Value
true if the result of the query is not empty; false if the result is empty or the query
raises a dynamic error

6Notes
The first dynamic error raised by a query is logged, but subsequent errors are
suppressed.

6Examples

Example 1 STRING Binding
This example parses and binds the input XML string to the initial context item of the
query x/y:

Hive> SELECT xml_exists("x/y", "<x><y>123</y></x>") FROM src LIMIT 1;
 .
 .

xml_exists

6-16 Oracle Big Data Connectors User's Guide

 .
true

Example 2 STRUCT Binding
This example defines two query variables, $data and $value:

Hive> SELECT xml_exists(
 "parse-xml($data)/x/y[@id = $value]",
 struct(
 "data", "<x><y id='1'/><y id='2'/></x>",
 "value", 2
)
) FROM src LIMIT 1;
 .
 .
 .
true

Example 3 Error Logging
In this example, an error is written to the log, because the input XML is invalid:

hive> SELECT xml_exists("x/y", "<x><y>123</invalid></x>") FROM src LIMIT 1;
 .
 .
 .
false

xml_query

Oracle XML Extensions for Hive 6-17

xml_query

Returns the result of a query as an array of STRING values.

6Signature
xml_query(
 STRING query,
 { STRING | STRUCT } bindings
) as ARRAY<STRING>

6Description

query
An XQuery or XPath expression. It must be a constant value, because it is only read
the first time the function is evaluated. The initial query string is compiled and reused
in all subsequent calls.

You can access files that are stored in the Hadoop distributed cache and HTTP
resources (http://...). Use the XQuery fn:doc function for XML documents, and the
fn:unparsed-text and fn:parsed-text-lines functions to access plain text files. See
Example 4.

If an error occurs while compiling the query, the function raises an error. If an error
occurs while evaluating the query, the error is logged (not raised), and an empty array
is returned.

bindings
The input that the query processes. The value can be an XML STRING or a STRUCT of
variable values:

■ STRING: The string is bound to the initial context item of the query as XML. See
Example 1.

■ STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a
variable binding (name, value) for the query. The name fields must be type STRING,
and the value fields can be any supported primitive. See "Data Type Conversions"
on page 6-12 and Example 2.

6Return Value
A Hive array of STRING values, which are the result of the query converted to a
sequence of atomic values. If the result of the query is empty, then the return value is
an empty array.

6Examples

Example 1 Using a STRING Binding
This example parses and binds the input XML string to the initial context item of the
query x/y:

hive>
SELECT xml_query("x/y", "<x><y>hello</y><z/><y>world</y></x>")
FROM src LIMIT 1;
 .
 .

xml_query

6-18 Oracle Big Data Connectors User's Guide

 .
["hello","world"]

Example 2 Using a STRUCT Binding
In this example, the second argument is a STRUCT that defines two query variables,
$data and $value. The values of the variables in the STRUCT are converted to XML
schema types as described in "Data Type Conversions" on page 6-12.

hive>
SELECT xml_query(
 "fn:parse-xml($data)/x/y[@id = $value]",
 struct(
 "data", "<x><y id='1'>hello</y><z/><y id='2'>world</y></x>",
 "value", 1
)
) FROM src LIMIT 1;
 .
 .
 .
["hello"]

Example 3 Obtaining Serialized XML
This example uses the fn:serialize function to return serialized XML:

hive>
SELECT xml_query(
"for $y in x/y
return fn:serialize($y)
",
"<x><y>hello</y><z/><y>world</y></x>"
) FROM src LIMIT 1;
 .
 .
 .
["<y>hello</y>","<y>world</y>"]

Example 4 Accessing the Hadoop Distributed Cache
This example adds a file named test.xml to the distributed cache, and then queries it
using the fn:doc function. The file contains this value:

<x><y>hello</y><z/><y>world</y></x>

hive> ADD FILE test.xml;
Added resource: test.xml
hive> SELECT xml_query("fn:doc('test.xml')/x/y", NULL) FROM src LIMIT 1;
 .
 .
 .
["hello","world"]

Example 5 Results of a Failed Query
The next example returns an empty array because the input XML is invalid. The XML
parsing error will be written to the log:

hive> SELECT xml_query("x/y", "<x><y>hello</y></invalid") FROM src LIMIT 1;
 .
 .
 .
[]

xml_query_as_primitive

Oracle XML Extensions for Hive 6-19

xml_query_as_primitive

Returns the result of a query as a Hive primitive value. Each Hive primitive data type
has a separate function named for it:

■ xml_query_as_string

■ xml_query_as_boolean

■ xml_query_as_tinyint

■ xml_query_as_smallint

■ xml_query_as_int

■ xml_query_as_bigint

■ xml_query_as_double

■ xml_query_as_float

6Signature
xml_query_as_primitive (
 STRING query,
 {STRUCT | STRING} bindings,
} as primitive

6Description

query
An XQuery or XPath expression. It must be a constant value, because it is only read
the first time the function is evaluated. The initial query string is compiled and reused
in all subsequent calls.

You can access files that are stored in the Hadoop distributed cache and HTTP
resources (http://...). Use the XQuery fn:doc function for XML documents, and the
fn:unparsed-text and fn:parsed-text-lines functions to access plain text files. See
Example 4.

If an error occurs while compiling the query, the function raises an error. If an error
occurs while evaluating the query, the error is logged (not raised), and an empty array
is returned.

bindings
The input that the query processes. The value can be an XML STRING or a STRUCT of
variable values:

■ STRING: The string is bound to the initial context item of the query as XML. See
Example 1.

■ STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a
variable binding (name, value) for the query. The name fields must be type STRING,
and the value fields can be any supported primitive. See "Data Type Conversions"
on page 6-12 and Example 2.

The first item in the result of the query is cast to the XML schema type that maps
to the primitive type of the function. If the query returns multiple items, then all
but the first are ignored.

xml_query_as_primitive

6-20 Oracle Big Data Connectors User's Guide

6Return Value
A Hive primitive value, which is the first item returned by the query, converted to an
atomic value. If the result of the query is empty, then the return value is NULL.

6Examples

Example 1 Using a STRING Binding
This example parses and binds the input XML string to the initial context item of the
query x/y:

hive> SELECT xml_query_as_string("x/y", "<x><y>hello</y></x>") FROM src LIMIT 1;
 .
 .
 .
"hello"

The following are string binding examples that use other primitive functions:

hive> SELECT xml_query_as_int("x/y", "<x><y>123</y></x>") FROM src LIMIT 1;
 .
 .
 .
123

hive> SELECT xml_query_as_double("x/y", "<x><y>12.3</y></x>") FROM src LIMIT 1;
 .
 .
 .
12.3

hive> SELECT xml_query_as_boolean("x/y", "<x><y>true</y></x>") FROM src LIMIT 1;
 .
 .
 .
true

Example 2 Using a STRUCT Binding
In this example, the second argument is a STRUCT that defines two query variables,
$data and $value. The values of the variables in the STRUCT are converted to XML
schema types as described in "Data Type Conversions" on page 6-12.

hive>
SELECT xml_query_as_string(
 "fn:parse-xml($data)/x/y[@id = $value]",
 struct(
 "data", "<x><y id='1'>hello</y><z/><y id='2'>world</y></x>",
 "value", 2
)
) FROM src LIMIT 1;
 .
 .
 .
world

Example 3 Returning Multiple Query Results
This example returns only the first item (hello) from the query. The second item
(world) is discarded.

xml_query_as_primitive

Oracle XML Extensions for Hive 6-21

hive> SELECT xml_query_as_string("x/y", "<x><y>hello</y><z/><y>world</y></x>")
FROM src LIMIT 1;
 .
 .
 .
hello

Example 4 Returning Empty Query Results
This example returns NULL because the result of the query is empty:

hive> SELECT xml_query_as_string("x/foo", "<x><y>hello</y><z/><y>world</y></x>")
FROM src LIMIT 1;
 .
 .
 .
NULL

Example 5 Obtaining Serialized XML
These examples use the fn:serialize function to return complex XML elements as a
STRING value:

hive> SELECT xml_query_as_string("fn:serialize(x/y[1])",
"<x><y>hello</y><z/><y>world</y></x>") FROM src LIMIT 1;
 .
 .
 .
"<y>hello</y>"

hive> SELECT xml_query_as_string(
 "fn:serialize(<html><head><title>{$desc}</title></head><body>Name:
{$name}</body></html>)",
 struct(
 "desc", "Employee Details",
 "name", "John Doe"
)
) FROM src LIMIT 1;
...
<html><head><title>Employee Details</title></head><body>Name: John
Doe</body></html>

Example 6 Accessing the Hadoop Distributed Cache
This example adds a file named test.xml to the distributed cache, and then queries it
using the fn:doc function. The file contains this value:

<x><y>hello</y><z/><y>world</y></x>

Hive> ADD FILE test.xml;
Added resource: test.xml
Hive> SELECT xml_query_as_string("fn:doc('test.xml')/x/y[1]", NULL) FROM src LIMIT
1;
 .
 .
 .
hello

Example 7 Results of a Failed Query
This example returns NULL because </invalid is missing an angle bracket. An XML
parsing error is written to the log:

xml_query_as_primitive

6-22 Oracle Big Data Connectors User's Guide

Hive> SELECT xml_query_as_string("x/y", "<x><y>hello</invalid") FROM src LIMIT 1;
 .
 .
 .
NULL

This example returns NULL because foo cannot be cast as xs:float. A cast error is
written to the log:

Hive> SELECT xml_query_as_float("x/y", "<x><y>foo</y></x>") FROM src LIMIT 1;
 .
 .
 .
NULL

xml_table

Oracle XML Extensions for Hive 6-23

xml_table

A user-defined table-generating function (UDTF) that maps an XML value to zero or
more table rows. This function enables nested repeating elements in XML to be
mapped to Hive table rows.

6Signature
xml_table(
 STRUCT? namespaces,
 STRING query,
 {STRUCT | STRING} bindings,
 STRUCT? columns
)

6Description

namespaces
Identifies the namespaces that the query and column expressions can use. Optional.

The value is a STRUCT with an even number of STRING fields. Each pair of fields defines
a namespace binding (prefix, URI) that can be used by the query or the column
expressions. See Example 3.

query
An XQuery or XPath expression that generates a table row for each returned value. It
must be a constant value, because it is only read the first time the function is
evaluated. The initial query string is compiled and reused in all subsequent calls.

If a dynamic error occurs during query processing, then the function does not raise an
error, but logs it the first time. Subsequent dynamic errors are not logged.

bindings
The input that the query processes. The value can be an XML STRING or a STRUCT of
variable values:

■ STRING: The string is bound to the initial context item of the query as XML. See
Example 1.

■ STRUCT: A STRUCT with an even number of fields. Each pair of fields defines a
variable binding (name, value) for the query. The name fields must be type STRING,
and the value fields can be any supported primitive. See "Data Type Conversions"
on page 6-12.

columns
The XQuery or XPath expressions that define the columns of the generated rows.
Optional.

The value is a STRUCT that contains the additional XQuery expressions. The XQuery
expressions must be constant STRING values, because they are only read the first time
the function is evaluated. For each column expression in the STRUCT, there is one
column in the table.

For each item returned by the query, the column expressions are evaluated with the
current item as the initial context item of the expression. The results of the column
expressions are converted to STRING values and become the values of the row.

xml_table

6-24 Oracle Big Data Connectors User's Guide

If the result of a column expression is empty or if a dynamic error occurs while
evaluating the column expression, then the corresponding column value is NULL. If a
column expression returns more than one item, then all but the first are ignored.

Omitting the columns argument is the same as specifying 'struct(".")'. See Example
2.

6Return Value
One table row for each item returned by the query argument.

6Notes
The XML table adapter enables Hive tables to be created over large XML files in HDFS.
See "Hive CREATE TABLE Syntax for XML Tables" on page 6-3.

6Examples

Example 1 Using a STRING Binding
The query "x/y" returns two <y> elements, therefore two table rows are generated.
Because there are two column expressions ("./z", "./w"), each row has two columns.

hive> SELECT xml_table(
 "x/y",
 "<x>
 <y>
 <z>a</z>
 <w>b</w>
 </y>
 <y>
 <z>c</z>
 </y>
 </x>
 ",
 struct("./z", "./w")
) AS (z, w)
 FROM src;
 .
 .
 .
a b
c NULL

Example 2 Using the Columns Argument
The following two queries are equivalent. The first query explicitly specifies the value
of the columns argument:

hive> SELECT xml_table(
 "x/y",
 "<x><y>hello</y><y>world</y></x>",
 struct(".")
) AS (y)
 FROM src;
 .
 .
 .
hello
world

xml_table

Oracle XML Extensions for Hive 6-25

The second query omits the columns argument, which defaults to struct("."):

hive> SELECT xml_table(
 "x/y",
 "<x><y>hello</y><y>world</y></x>"
) AS (y)
 FROM src;
 .
 .
 .
hello
world

Example 3 Using the Namespaces Argument
This example specifies the optional namespaces argument, which identifies an ns
prefix and a URI of http://example.org.

hive> SELECT xml_table(
 struct("ns", "http://example.org"),
 "ns:x/ns:y",
 "<x xmlns='http://example.org'><y><z/></y><y><z/><z/></y></x>",
 struct("count(./ns:z)")
) AS (y)
 FROM src;
 .
 .
 .
1
2

Example 4 Querying a Hive Table of XML Documents
This example queries a table named COMMENTS3, which has a single column named
XML_STR of type STRING. It contains these three rows:

hive> SELECT xml_str FROM comments3;

<comment id="12345" user="john" text="It is raining:("/>
<comment id="56789" user="kelly" text="I won the lottery!"><like
user="john"/><like user="mike"/></comment>
<comment id="54321" user="mike" text="Happy New Year!"><like
user="laura"/></comment>

The following query shows how to extract the user, text, and number of likes from the
COMMENTS3 table.

hive> SELECT t.id, t.usr, t.likes
 FROM comments3 LATERAL VIEW xml_table(
 "comment",
 comments.xml_str,
 struct("./@id", "./@user", "fn:count(./like)")
) t AS id, usr, likes;

12345 john 0
56789 kelly 2
54321 mike 1

xml_table

6-26 Oracle Big Data Connectors User's Guide

Example 5 Mapping Nested XML Elements to Table Rows
This example shows how to use xml_table to flatten nested, repeating XML elements
into table rows. See Example 4 for the COMMENTS table.

> SELECT t.i, t.u, t.l
 FROM comments3 LATERAL VIEW xml_table (
 "let $comment := ./comment
 for $like in $comment/like
 return
 <r>
 <id>{$comment/@id/data()}</id>
 <user>{$comment/@user/data()}</user>
 <like>{$like/@user/data()}</like>
 </r>
 ",
 comments.xml_str,
 struct("./id", "./user", "./like")
) t AS i, u, l;

56789 kelly john
56789 kelly mike
54321 mike laura

Example 6 Mapping Optional Nested XML Elements to Table Rows
This example is a slight modification of Example 5 that produces a row even when a
comment has no likes. See Example 4 for the COMMENTS table.

> SELECT t.i, t.u, t.l
 FROM comments3 LATERAL VIEW xml_table (
 "let $comment := ./comment
 for $like allowing empty in $comment/like
 return
 <r>
 <id>{$comment/@id/data()}</id>
 <user>{$comment/@user/data()}</user>
 <like>{$like/@user/data()}</like>
 </r>
 ",
 comments.xml_str,
 struct("./id", "./user", "./like")
) t AS i, u, l;

12345 john
56789 kelly john
56789 kelly mike
54321 mike laura

Note: You could use the xml_query_as_string function to achieve
the same result in this example. However, xml_table is more efficient,
because a single function call sets all three column values and parses
the input XML only once for each row. The xml_query_as_string
function requires a separate function call for each of the three columns
and reparses the same input XML value each time.

xml_table

Oracle XML Extensions for Hive 6-27

Example 7 Creating a New View
You can create views and new tables using xml_table, the same as any
table-generating function. This example creates a new view named COMMENTS_LIKES
from the COMMENTS table:

hive> CREATE VIEW comments_likes AS
 SELECT xml_table(
 "comment",
 comments.xml_str,
 struct("./@id", "count(./like)")
) AS (id, likeCt)
 FROM comments;

This example queries the new view:

> SELECT * FROM comments_likes
 WHERE CAST(likeCt AS INT) != 0;

56789 2
54321 1

Example 8 Accessing the Hadoop Distributed Cache
You can access XML documents and text files added to the distributed cache by using
the fn:doc and fn:unparsed-text functions.

This example queries a file named test.xml that contains this string:

<x><y>hello</y><z/><y>world</y></x>

hive> ADD FILE test.xml;
Added resource: test.xml
hive> SELECT xml_table("fn:doc('test.xml')/x/y", NULL) AS y FROM src;
 .
 .
 .
hello
world

xml_table

6-28 Oracle Big Data Connectors User's Guide

Part IV
Part IV Oracle R Advanced Analytics for Hadoop

This part contains the following chapter:

■ Chapter 7, "Using Oracle R Advanced Analytics for Hadoop"

7

Using Oracle R Advanced Analytics for Hadoop 7-1

7Using Oracle R Advanced Analytics for Hadoop

This chapter describes R support for big data. It contains the following sections:

■ About Oracle R Advanced Analytics for Hadoop

■ Access to HDFS Files

■ Access to Apache Hive

■ Access to Oracle Database

■ Oracle R Advanced Analytics for Hadoop Functions

■ Demos of Oracle R Advanced Analytics for Hadoop Functions

■ Security Notes for Oracle R Advanced Analytics for Hadoop

About Oracle R Advanced Analytics for Hadoop
Oracle R Advanced Analytics for Hadoop provides:

■ a general computation framework, in which you can use the R language to write
your custom logic as mappers or reducers. The code executes in a distributed,
parallel manner using the available compute and storage resources on the Hadoop
cluster.

■ an R interface to manipulate Hive tables, which is similar to the transparency layer
of Oracle R Enterprise but with a restricted set of functionality.

■ a set of pre-packaged parallel-distributed algorithms.

Oracle R Advanced Analytics for Hadoop Architecture
Oracle R Advanced Analytics for Hadoop:

■ is built upon Hadoop streaming, a utility that is a part of Hadoop distribution and
allows creation and execution of Map or Reduce jobs with any executable or script
as mapper or reducer.

■ is designed for R users to work with Hadoop cluster in a client-server
configuration. Client configurations must conform to the requirements of the
Hadoop distribution that Oracle R Advanced Analytics for Hadoop is deployed in.

Note: Oracle R Advanced Analytics for Hadoop was previously
called Oracle R Connector for Hadoop or ORCH. ORCH is still
mentioned in this document and in the product for backward
compatibility.

About Oracle R Advanced Analytics for Hadoop

7-2 Oracle Big Data Connectors User's Guide

■ uses command line interfaces to HDFS and HIVE to communicate from client
nodes to Hadoop clusters.

■ builds the logic required to transform an input stream of data into R data frame
object to be readily consumed by user-provided mapper and reducer functions
written into R.

■ allows R users to move data from an Oracle Database table or view into Hadoop
as an HDFS file, using the sqoop utility or Oracle Loader for Hadoop utility,
depending on the size of data being moved and security requirements. Similarly
data can be moved back from a HDFS file into Oracle Database.

■ support’s R’s binary RData representation for input and output, for performance
sensitive analytic workloads. Conversion utilities from delimiter separated
representation to and from RData representation is available as part of Oracle R
Advanced Analytics for Hadoop.

■ includes a Hadoop Abstraction Layer (HAL) which manages the similarities and
differences across various Hadoop distributions. ORCH will auto-detect the
Hadoop version at startup.

Oracle R Advanced Analytics for Hadoop packages and functions
Oracle R Advanced Analytics for Hadoop includes a collection of R packages that
provides:

■ Interfaces to work with the:

– Apache Hive tables

– Apache Hadoop compute infrastructure

– local R environment

– Oracle Database tables

■ Predictive analytic techniques for:

– linear regression

– generalized linear models

– neural networks

– matrix completion using low rank matrix factorization

– nonnegative matrix factorization

– k-means clustering

– principal components analysis

– multivariate analysis

While these techniques have R interfaces, Oracle R Advanced Analytics for
Hadoop implement them in either Java or R as distributed, parallel MapReduce
jobs, thereby leveraging all nodes of your Hadoop cluster.

You install and load this package as you would any other R package. Using simple R
functions, you can perform tasks like these:

■ Access and transform HDFS data using a Hive-enabled transparency layer

■ Use the R language for writing mappers and reducers

■ Copy data between R memory, the local file system, HDFS, Hive, and Oracle
Database instances

About Oracle R Advanced Analytics for Hadoop

Using Oracle R Advanced Analytics for Hadoop 7-3

■ Manipulate Hive data transparently from R

■ Execute R programs as Hadoop MapReduce jobs and return the results to any of
those locations

– With Oracle R Advanced Analytics for Hadoop, MapReduce jobs can be
submitted from R for both non-cluster (local) execution and Hadoop cluster
execution

– When Oracle R Enterprise and Oracle R Advanced Analytics for Hadoop are
used together on a database server, you can schedule database jobs using the
DBMS_SCHEDULER to execute scripts containing ORCH functions

To use Oracle R Advanced Analytics for Hadoop, you should be familiar with
MapReduce programming, R programming, and statistical methods.

Oracle R Advanced Analytics for Hadoop APIs
Oracle R Advanced Analytics for Hadoop provides access from a local R client to
Apache Hadoop using functions with these prefixes:

■ hadoop: Identifies functions that provide an interface to Hadoop MapReduce

■ hdfs: Identifies functions that provide an interface to HDFS

■ orch: Identifies a variety of functions; orch is a general prefix for ORCH functions

■ ore: Identifies functions that provide an interface to a Hive data store

Oracle R Advanced Analytics for Hadoop uses data frames as the primary object type,
but it can also operate on vectors and matrices to exchange data with HDFS. The APIs
support the numeric, integer, and character data types in R.

All of the APIs are included in the ORCH library. The functions are listed in "Oracle R
Advanced Analytics for Hadoop Functions" on page 7-10.

Inputs to Oracle R Advanced Analytics for Hadoop
Oracle R Advanced Analytics for Hadoop can work with delimited text files resident
in an HDFS directory, HIVE tables, or binary RData representations of data. If the
input data to an Oracle R Advanced Analytics for Hadoop orchestrated map-reduce
computation does not reside in HDFS, a copy of the data in HDFS is created
automatically prior to launching the computation.

Before Oracle R Advanced Analytics for Hadoop can work with delimited text files it
determines metadata associated with the files and captures the same in a file stored
alongside of the data files. This file is named __ORCHMETA__. The metadata contains
information such as:

■ If the file contains key(s), then the delimiter that is the key separator

■ The delimiter that is the value separator

■ Number and data types of columns in the file

■ Optional names of columns

■ Dictionary information for categorical columns

■ Other Oracle R Advanced Analytics for Hadoop-specific system data

Oracle R Advanced Analytics for Hadoop runs an automatic metadata discovery
procedure on HDFS objects as part of hdfs.attach() invocation to create the metadata

See Also: The R Project website at http://www.r-project.org/

Access to HDFS Files

7-4 Oracle Big Data Connectors User's Guide

file. When working with HIVE tables, __ORCHMETA__ file is created automatically
from the HIVE table definition2.

Oracle R Advanced Analytics for Hadoop can optionally convert input data into R’s
binary RData representation for I/O performance that is on par with a pure Java based
map-reduce implementation.

Oracle R Advanced Analytics for Hadoop captures row streams from HDFS files and
delivers them formatted as a data frame object (or optionally matrix, vector, or list
objects generated from the data frame object or AS IS, if RData representation is used)
to the mapped function written in R. To accomplish this, Oracle R Advanced Analytics
for Hadoop must recognize the tokens and data types of the tokens that become
columns of a data frame. Oracle R Advanced Analytics for Hadoop uses R’s facilities
to parse and interpret tokens in input row streams. If missing values are not
represented using R’s “NA” token, they can be explicitly identified by the na.strings
argument of hdfs.attach().

Delimited text files with the same key and value separator are preferred over files with
a different key delimiter and value delimiter. The Read performance of files with the
same key and value delimiter is roughly 2x better than that of files with different key
and value delimiter.

The key delimiter and value delimiter can be specified through the key.sep and val.sep
arguments of hdfs.attach() or when running a MapReduce job for its output HDFS
data.

Binary RData representation is the most performance efficient representation of input
data in Oracle R Advanced Analytics for Hadoop. When possible, users are
encouraged to use this binary data representation for performance sensitive analytics.

Access to HDFS Files
For Oracle R Advanced Analytics for Hadoop to access the data stored in HDFS, the
input files must comply with the following requirements:

■ All input files for a MapReduce job must be stored in one directory as the parts of
one logical file. Any valid HDFS directory name and file name extensions are
acceptable.

■ Any file in that directory with a name beginning with an underscore (_) is ignored.

All delimiters are supported, and key and value delimiters can be different.

You can also convert a delimited file into binary format, using the Rdata
representation from R, for the best I/O performance.

Access to Apache Hive
Apache Hive provides an alternative storage and retrieval mechanism to HDFS files
through a querying language called HiveQL, which closely resembles SQL. Hive uses
MapReduce for distributed processing. However, the data is structured and has
additional metadata to support data discovery. Oracle R Advanced Analytics for
Hadoop uses the data preparation and analysis features of HiveQL, while enabling
you to use R language constructs.

See Also: The Apache Hive website at http://hive.apache.org

Access to Apache Hive

Using Oracle R Advanced Analytics for Hadoop 7-5

ORCH Functions for Hive
ORCH provides these conversion functions to help you move data between HDFS and
Hive:

hdfs.toHive
hdfs.fromHive

ORE Functions for Hive
You can connect to Hive and analyze and transform Hive table objects using R
functions that have an ore prefix, such as ore.connect. If you are also using Oracle R
Enterprise, then you will recognize these functions. The ore functions in Oracle R
Enterprise create and manage objects in an Oracle database, and the ore functions in
Oracle R Advanced Analytics for Hadoop create and manage objects in a Hive
database. You can connect to one database at a time, either Hive or Oracle Database,
but not both simultaneously.

For example, the ore.connect(type="HIVE") establishes a connection with the
default HIVE database.ore.hiveOptions(dbname='dbtmp') and allows you to change
the default database, while ore.showHiveOptions() allows you to examine the current
default HIVE database.

See Table 7–7 for a list of ORE as.ore.* and is.ore.* functions.

Generic R Functions Supported in Hive
Oracle R Advanced Analytics for Hadoop also overloads the following standard
generic R functions with methods to work with Hive objects.

Character methods
casefold, chartr, gsub, nchar, substr, substring, tolower, toupper

This release does not support grepl or sub.

Frame methods
■ attach, show

■ [, $, $<-, [[, [[<-

■ Subset functions: head, tail

■ Metadata functions: dim, length, NROW, nrow, NCOL, ncol, names, names<-,
colnames, colnames<-

■ Conversion functions: as.data.frame, as.env, as.list

■ Arithmetic operators: +, -, *, ^, %%, %/%, /

■ Compare, Logic, xor, !

■ Test functions: is.finite, is.infinite, is.na, is.nan

■ Mathematical transformations: abs, acos, asin, atan, ceiling, cos, exp, expm1,
floor, log, log10, log1p, log2, logb, round, sign, sin, sqrt, tan, trunc

■ Basic statistics: colMeans, colSums, rowMeans, rowSums, Summary, summary, unique

Note: For information about requirements and instructions to set up
and use Oracle R Enterprise, refer to Oracle R Enterprise library at:
http://docs.oracle.com/cd/E40980_01/welcome.html.

Access to Apache Hive

7-6 Oracle Big Data Connectors User's Guide

■ by, merge

■ unlist, rbind, cbind, data.frame, eval

This release does not support dimnames, interaction, max.col, row.names,
row.names<-, scale, split, subset, transform, with, or within.

Logical methods
ifelse, Logic, xor, !

Matrix methods
Not supported

Numeric methods
■ Arithmetic operators: +, -, *, ^, %%, %/%, /

■ Test functions: is.finite, is.infinite, is.nan

■ abs, acos, asin, atan, ceiling, cos, exp, expm1, floor, log, log1p, log2, log10,
logb, mean, round, sign, sin, sqrt, Summary, summary, tan, trunc, zapsmall

This release does not support atan2, besselI, besselK, besselJ, besselY, diff,
factorial, lfactorial, pmax, pmin, or tabulate.

Vector methods
■ show, length, c

■ Test functions: is.vector, is.na

■ Conversion functions: as.vector, as.character, as.numeric, as.integer,
as.logical

■ [, [<-, |

■ by, Compare, head, %in%, paste, sort, table, tail, tapply, unique

This release does not support interaction, lengthb, rank, or split.

Example 7–1 shows simple data preparation and processing. For additional details, see
"Support for Hive Data Types" on page 7-7.

Example 7–1 Using R to Process Data in Hive Tables

Connect to Hive
ore.connect(type="HIVE")

Attach the current envt. into search path of R
ore.attach()

create a Hive table by pushing the numeric columns of the iris data set
IRIS_TABLE <- ore.push(iris[1:4])

Create bins based on Petal Length
 IRIS_TABLE$PetalBins = ifelse(IRIS_TABLE$Petal.Length < 2.0, "SMALL PETALS",
+ ifelse(IRIS_TABLE$Petal.Length < 4.0, "MEDIUM PETALS",
+ ifelse(IRIS_TABLE$Petal.Length < 6.0,
+ "MEDIUM LARGE PETALS", "LARGE PETALS")))

#PetalBins is now a derived column of the HIVE object
> names(IRIS_TABLE)
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "PetalBins"

Based on the bins, generate summary statistics for each group
aggregate(IRIS_TABLE$Petal.Length, by = list(PetalBins = IRIS_TABLE$PetalBins),

Access to Apache Hive

Using Oracle R Advanced Analytics for Hadoop 7-7

+ FUN = summary)
1 LARGE PETALS 6 6.025000 6.200000 6.354545 6.612500 6.9 0
2 MEDIUM LARGE PETALS 4 4.418750 4.820000 4.888462 5.275000 5.9 0
3 MEDIUM PETALS 3 3.262500 3.550000 3.581818 3.808333 3.9 0
4 SMALL PETALS 1 1.311538 1.407692 1.462000 1.507143 1.9 0
Warning message:
ORE object has no unique key - using random order

Support for Hive Data Types
Oracle R Advanced Analytics for Hadoop can access any Hive table containing
columns with string and numeric data types such as tinyint, smallint, bigint, int,
float, and double.

There is no support for these complex data types:

array
binary
map
struct
timestamp
union

If you attempt to access a Hive table containing an unsupported data type, you will
receive an error message. To access the table, you must convert the column to a
supported data type.

To convert a column to a supported data type:

1. Open the Hive command interface:

$ hive
hive>

2. Identify the column with an unsupported data type:

hive> describe table_name;

3. View the data in the column:

hive> select column_name from table_name;

4. Create a table for the converted data, using only supported data types.

5. Copy the data into the new table, using an appropriate conversion tool.

Example 7–2 shows the conversion of an array. Example 7–3 and Example 7–4 show
the conversion of timestamp data.

Example 7–2 Converting an Array to String Columns

R> ore.sync(table="t1")
 Warning message:
 table t1 contains unsupported data types
 .
 .
 .
hive> describe t1;
OK
 col1 int
 col2 array<string>

hive> select * from t1;

Access to Apache Hive

7-8 Oracle Big Data Connectors User's Guide

OK
1 ["a","b","c"]
2 ["d","e","f"]
3 ["g","h","i"]

hive> create table t2 (c1 string, c2 string, c2 string);
hive> insert into table t2 select col2[0], col2[1], col2[2] from t1;
 .
 .
 .
R> ore.sync(table="t2")
R> ore.ls()
[1] "t2"
R> t2$c1
[1] "a" "d" "g"

Example 7–3 uses automatic conversion of the timestamp data type into string. The
data is stored in a table named t5 with a column named tstmp.

Example 7–3 Converting a Timestamp Column

hive> select * from t5;

hive> create table t6 (timestmp string);
hive> insert into table t6 SELECT tstmp from t5;

Example 7–4 uses the Hive get_json_object function to extract the two columns of
interest from the JSON table into a separate table for use by Oracle R Advanced
Analytics for Hadoop.

Example 7–4 Converting a Timestamp Column in a JSON File

hive> select * from t3;
OK

{"custId":1305981,"movieId":null,"genreId":null,"time":"2010-12-30:23:59:32","reco
mmended":null,"activity":9}

hive> create table t4 (custid int, time string);

hive> insert into table t4 SELECT cast(get_json_object(c1, '$.custId') as int),
cast(get_json_object(c1, '$.time') as string) from t3;

Usage Notes for Hive Access
The Hive command language interface (CLI) is used for executing queries and
provides support for Linux clients. There is no JDBC or ODBC support.

The ore.create function creates Hive tables only as text files. However, Oracle R
Advanced Analytics for Hadoop can access Hive tables stored as either text files or
sequence files.

You can use the ore.exec function to execute Hive commands from the R console. For
a demo, run the hive_sequencefile demo.

Oracle R Advanced Analytics for Hadoop can access tables and views in the default
Hive database only. To allow read access to objects in other databases, you must
expose them in the default database. For example, you can create views.

Access to Apache Hive

Using Oracle R Advanced Analytics for Hadoop 7-9

Oracle R Advanced Analytics for Hadoop does not have a concept of ordering in Hive.
An R frame persisted in Hive might not have the same ordering after it is pulled out of
Hive and into memory. Oracle R Advanced Analytics for Hadoop is designed
primarily to support data cleanup and filtering of huge HDFS data sets, where
ordering is not critical. You might see warning messages when working with
unordered Hive frames:

Warning messages:
1: ORE object has no unique key - using random order
2: ORE object has no unique key - using random order

To suppress these warnings, set the ore.warn.order option in your R session:

R> options(ore.warn.order = FALSE)

Example: Loading Hive Tables into Oracle R Advanced Analytics for Hadoop
Example 7–5 provides an example of loading a Hive table into an R data frame for
analysis. It uses these Oracle R Advanced Analytics for Hadoop functions:

hdfs.attach
ore.attach
ore.connect
ore.create
ore.hiveOptions
ore.sync

Example 7–5 Loading a Hive Table

Connect to HIVE metastore and sync the HIVE input table into the R session.
ore.connect(type="HIVE")
ore.sync(table="datatab")
ore.attach()

The "datatab" object is a Hive table with columns named custid, movieid,
activity, and rating.
Perform filtering to remove missing (NA) values from custid and movieid columns
Project out three columns: custid, movieid and rating
t1 <- datatab[!is.na(datatab$custid) &
 !is.na(datatab$movieid) &
 datatab$activity==1, c("custid","movieid", "rating")]

Set HIVE field delimiters to ','. By default, it is Ctrl+a for text files but
ORCH 2.0 supports only ',' as a file separator.
ore.hiveOptions(delim=',')

Create another Hive table called "datatab1" after the transformations above.
ore.create (t1, table="datatab1")

Use the HDFS directory, where the table data for datatab1 is stored, to attach
it to ORCH framework. By default, this location is "/user/hive/warehouse"
dfs.id <- hdfs.attach("/user/hive/warehouse/datatab1")

dfs.id can now be used with all hdfs.*, orch.* and hadoop.* APIs of ORCH for
further processing and analytics.

Access to Oracle Database

7-10 Oracle Big Data Connectors User's Guide

Access to Oracle Database
Oracle R Advanced Analytics for Hadoop provides a basic level of database access.
You can move the contents of a database table to HDFS, and move the results of HDFS
analytics back to the database.

You can then perform additional analysis on this smaller set of data using a separate
product named Oracle R Enterprise. It enables you to perform statistical analysis on
database tables, views, and other data objects using the R language. You have
transparent access to database objects, including support for Business Intelligence and
in-database analytics.

Access to the data stored in an Oracle database is always restricted to the access rights
granted by your DBA.

Oracle R Enterprise is included in the Oracle Advanced Analytics option to Oracle
Database Enterprise Edition. It is not included in the Oracle Big Data Connectors.

Usage Notes for Oracle Database Access
Oracle R Advanced Analytics for Hadoop uses Sqoop to move data between HDFS
and Oracle Database. Sqoop imposes several limitations on Oracle R Advanced
Analytics for Hadoop:

■ You cannot import Oracle tables with BINARY_FLOAT or BINARY_DOUBLE columns.
As a work-around, you can create a view that casts these columns to NUMBER data
type.

■ All column names must be in upper case.

Scenario for Using Oracle R Advanced Analytics for Hadoop with Oracle R Enterprise
The following scenario may help you identify opportunities for using Oracle R
Advanced Analytics for Hadoop with Oracle R Enterprise.

Using Oracle R Advanced Analytics for Hadoop, you can look for files that you have
access to on HDFS and execute R calculations on data in one such file. You can also
upload data stored in text files on your local file system into HDFS for calculations,
schedule an R script for execution on the Hadoop cluster using DBMS_SCHEDULER, and
download the results into a local file.

Using Oracle R Enterprise, you can open the R interface and connect to Oracle
Database to work on the tables and views that are visible based on your database
privileges. You can filter out rows, add derived columns, project new columns, and
perform visual and statistical analysis.

Again using Oracle R Advanced Analytics for Hadoop, you might deploy a
MapReduce job on Hadoop for CPU-intensive calculations written in R. The
calculation can use data stored in HDFS or, with Oracle R Enterprise, in an Oracle
database. You can return the output of the calculation to an Oracle database and to the
R console for visualization or additional processing.

Oracle R Advanced Analytics for Hadoop Functions
The Oracle R Advanced Analytics for Hadoop functions are described in R Help
topics. This section groups them into functional categories and provides brief
descriptions.

See Also: Oracle R Enterprise User's Guide

Oracle R Advanced Analytics for Hadoop Functions

Using Oracle R Advanced Analytics for Hadoop 7-11

■ Native Analytical Functions

■ Using the Hadoop Distributed File System (HDFS)

■ Using Apache Hive

■ Using Aggregate Functions in Hive

■ Making Database Connections

■ Copying Data and Working with HDFS Files

■ Converting to R Data Types

■ Using MapReduce

■ Debugging Scripts

Native Analytical Functions
Table 7–1 describes the native analytic functions.

Table 7–1 Functions for Statistical Analysis

Function Description

orch.cor Generates a correlation matrix with a Pearson’s correlation coefficients.

orch.cov Generates a covariance matrix.

orch.getXlevels Creates a list of factor levels that can be used in the xlev argument of a
model.matrix call. It is equivalent to the .getXlevels function in the
stats package.

orch.glm Fits and uses generalized linear models on data stored in HDFS.

orch.kmeans Perform k-means clustering on a data matrix that is stored as a file in
HDFS.

orch.lm Fits a linear model using tall-and-skinny QR (TSQR) factorization and
parallel distribution. The function computes the same statistical
parameters as the Oracle R Enterprise ore.lm function.

orch.lmf Fits a low rank matrix factorization model using either the jellyfish
algorithm or the Mahout alternating least squares with weighted
regularization (ALS-WR) algorithm.

orch.neural Provides a neural network to model complex, nonlinear relationships
between inputs and outputs, or to find patterns in the data.

orch.nmf Provides the main entry point to create a nonnegative matrix
factorization model using the jellyfish algorithm. This function can
work on much larger data sets than the R NMF package, because the
input does not need to fit into memory.

orch.nmf.NMFalgo Plugs in to the R NMF package framework as a custom algorithm. This
function is used for benchmark testing.

orch.princomp Analyzes the performance of principal component.

orch.recommend Computes the top n items to be recommended for each user that has
predicted ratings based on the input orch.mahout.lmf.asl model.

orch.sample Provides the reservoir sampling.

orch.scale Performs scaling.

Oracle R Advanced Analytics for Hadoop Functions

7-12 Oracle Big Data Connectors User's Guide

Using the Hadoop Distributed File System (HDFS)
Table 7–2 describes the functions that execute HDFS commands from within the R
environment.

Using Apache Hive
Table 7–3 describes the functions available in Oracle R Advanced Analytics for
Hadoop for use with Hive. See "ORE Functions for Hive" on page 7-5.

Table 7–2 Functions for Using HDFS

Function Description

hdfs.cd Sets the default HDFS path.

hdfs.cp Copies an HDFS file from one location to another.

hdfs.describe Returns the metadata associated with a file in HDFS.

hdfs.exists Verifies that a file exists in HDFS.

hdfs.head Copies a specified number of lines from the beginning of a file in
HDFS.

hdfs.id Converts an HDFS path name to an R dfs.id object.

hdfs.ls Lists the names of all HDFS directories containing data in the specified
path.

hdfs.mkdir Creates a subdirectory in HDFS relative to the current working
directory.

hdfs.mv Moves an HDFS file from one location to another.

hdfs.parts Returns the number of parts composing a file in HDFS.

hdfs.pwd Identifies the current working directory in HDFS.

hdfs.rm Removes a file or directory from HDFS.

hdfs.rmdir Deletes a directory in HDFS.

hdfs.root Returns the HDFS root directory.

hdfs.setroot Sets the HDFS root directory.

hdfs.size Returns the size of a file in HDFS.

hdfs.tail Copies a specified number of lines from the end of a file in HDFS.

Table 7–3 Functions for Using Hive

Function Description

hdfs.fromHive Converts a Hive table to a HDFS identifier in ORCH.

hdfs.toHive Converts an HDFS object identifier to a Hive table represented by an
ore.frame object.

ore.create Creates a database table from a data.frame or ore.frame object.

ore.drop Drops a database table or view.

ore.get Retrieves the specified ore.frame object.

ore.pull Copies data from a Hive table to an R object.

ore.push Copies data from an R object to a Hive table.

ore.recode Replaces the values in an ore.vector object.

Oracle R Advanced Analytics for Hadoop Functions

Using Oracle R Advanced Analytics for Hadoop 7-13

Using Aggregate Functions in Hive
Table 7–4 describes the aggregate functions from the OREstats package that Oracle R
Advanced Analytics for Hadoop supports for use with Hive data.

Making Database Connections
Table 7–5 describes the functions for establishing a connection to Oracle Database.

Copying Data and Working with HDFS Files
Table 7–6 describes the functions for copying data between platforms, including R data
frames, HDFS files, local files, and tables in an Oracle database.

Table 7–4 Oracle R Enterprise Aggregate Functions

Function Description

aggregate Splits the data into subsets and computes summary statistics for each
subset.

fivenum Returns Tukey's five-number summary (minimum, lower hinge,
median, upper hinge, and maximum) for the input data.

IQR Calculates an interquartile range.

median Calculates a sample median.

quantile Generates sample quantiles that correspond to the specified
probabilities.

sd Calculates the standard deviation.

var1

1 For vectors only

Calculates the variance.

Table 7–5 Functions for Using Oracle Database

Function Description

orch.connect Establishes a connection to Oracle Database.

orch.connected Checks whether Oracle R Advanced Analytics for Hadoop is connected
to Oracle Database.

orch.dbcon Returns a connection object for the current connection to Oracle
Database, excluding the authentication credentials.

orch.dbinfo Displays information about the current connection.

orch.disconnect Disconnects the local R session from Oracle Database.

orch.reconnect Reconnects to Oracle Database with the credentials previously returned
by orch.disconnect.

Table 7–6 Functions for Copying Data

Function Description

hdfs.attach Copies data from an unstructured data file in HDFS into the R
framework. By default, data files in HDFS are not visible to the
connector. However, if you know the name of the data file, you can
use this function to attach it to the Oracle R Advanced Analytics for
Hadoop name space.

hdfs.download Copies a file from HDFS to the local file system.

Oracle R Advanced Analytics for Hadoop Functions

7-14 Oracle Big Data Connectors User's Guide

Converting to R Data Types
Table 7–7 describes functions for converting and testing data types. The Oracle R
Enterprise OREbase package provides these functions.

hdfs.get Copies data from HDFS into a data frame in the local R environment.
All metadata is extracted and all attributes, such as column names
and data types, are restored if the data originated in an R
environment. Otherwise, generic attributes like val1 and val2 are
assigned.

hdfs.pull Copies data from HDFS into an Oracle database. This operation
requires authentication by Oracle Database. See orch.connect.

hdfs.push Copies data from an Oracle database to HDFS. This operation
requires authentication by Oracle Database. See orch.connect.

hdfs.put Copies data from an R in-memory object (data.frame) to HDFS. All
data attributes, like column names and data types, are stored as
metadata with the data.

hdfs.sample Copies a random sample of data from a Hadoop file into an R
in-memory object. Use this function to copy a small sample of the
original HDFS data for developing the R calculation that you
ultimately want to execute on the entire HDFS data set on the
Hadoop cluster.

hdfs.upload Copies a file from the local file system into HDFS.

is.hdfs.id Indicates whether an R object contains a valid HDFS file identifier.

Table 7–7 Functions for Converting and Testing Data Types

Function Description

as.ore Coerces an in-memory R object to an ORE object.

as.ore.character Coerces an in-memory R object to an ORE character object.

as.ore.date Coerces an in-memory R object to an ORE date object.

as.ore.datetime Coerces an in-memory R object to an ORE datetime object.

as.ore.difftime Coerces an in-memory R object to an ORE difftime object.

as.ore.factor Coerces an in-memory R object to an ORE factor object.

as.ore.frame Coerces an in-memory R object to an ORE frame object.

as.ore.integer Coerces an in-memory R object to an ORE integer object.

as.ore.list Coerces an in-memory R object to an ORE list object.

as.ore.logical Coerces an in-memory R object to an ORE logical object.

as.ore.matrix Coerces an in-memory R object to an ORE matrix object.

as.ore.numeric Coerces an in-memory R object to an ORE numeric object.

as.ore.object Coerces an in-memory R object to an ORE object.

as.ore.vector Coerces an in-memory R object to an ORE vector object.

is.ore Tests whether the specified value is an object of a particular Oracle R
Enterprise class.

is.ore.character Tests whether the specified value is a character.

Table 7–6 (Cont.) Functions for Copying Data

Function Description

Oracle R Advanced Analytics for Hadoop Functions

Using Oracle R Advanced Analytics for Hadoop 7-15

Using MapReduce
Table 7–8 describes functions that you use when creating and running MapReduce
programs.

is.ore.date Tests whether the specified value is a date.

is.ore.datetime Tests whether the specified value is a datetime type.

is.ore.difftime Tests whether the specified value is a difftime type.

is.ore.factor Tests whether the specified value is a factor.

is.ore.frame Tests whether the specified value is a frame.

is.ore.integer Tests whether the specified value is an integer.

is.ore.list Tests whether the specified value is a list.

is.ore.logical Tests whether the specified value is a logical type.

is.ore.matrix Tests whether the specified value is a matrix.

is.ore.numeric Tests whether the specified value is numeric.

is.ore.object Tests whether the specified value is an object.

is.ore.vector Tests whether the specified value is a vector.

Table 7–8 Functions for Using MapReduce

Function Description

hadoop.exec Starts the Hadoop engine and sends the mapper, reducer, and
combiner R functions for execution. You must load the data into
HDFS first.

hadoop.jobs Lists the running jobs, so that you can evaluate the current load on
the Hadoop cluster.

hadoop.run Starts the Hadoop engine and sends the mapper, reducer, and
combiner R functions for execution. If the data is not already stored
in HDFS, then hadoop.run first copies the data there.

orch.dryrun Switches the execution platform between the local host and the
Hadoop cluster. No changes in the R code are required for a dry run.

orch.export Makes R objects from a user's local R session available in the Hadoop
execution environment, so that they can be referenced in MapReduce
jobs.

orch.keyval Outputs key-value pairs in a MapReduce job.

orch.keyvals Outputs a set of key-value pairs in a MapReduce job.

orch.pack Compresses one or more in-memory R objects that the mappers or
reducers must write as the values in key-value pairs.

orch.tempPath Sets the path where temporary data is stored.

orch.unpack Restores the R objects that were compressed with a previous call to
orch.pack.

orch.create.parttab Enables partitioned Hive tables to be used with ORCH MapReduce
framework.

Table 7–7 (Cont.) Functions for Converting and Testing Data Types

Function Description

Demos of Oracle R Advanced Analytics for Hadoop Functions

7-16 Oracle Big Data Connectors User's Guide

Debugging Scripts
Table 7–9 lists the functions available to help you debug your R program scripts.

Demos of Oracle R Advanced Analytics for Hadoop Functions
Oracle R Advanced Analytics for Hadoop provides an extensive set of demos, which
you can access in the same way as any other R demos.

The demo function lists the functions available in ORCH:

R> demo(package="ORCH")
Demos in package 'ORCH':

hdfs_cpmv ORCH's copy and move APIs
hdfs_datatrans ORCH's HDFS data transfer APIs
hdfs_dir ORCH's HDFS directory manipulation APIs
hdfs_putget ORCH's get and put API usage
hive_aggregate Aggregation in HIVE
hive_analysis Basic analysis & data processing operations
hive_basic Basic connectivity to HIVE storage
hive_binning Binning logic
hive_columnfns Column function
hive_nulls Handling of NULL in SQL vs. NA in R
 .
 .
 .

To run a demo from this list, use this syntax:

demo("demo_name", package="ORCH")

For example, this package runs the Hive binning demo:

R> demo("hive_binning", package = "ORCH")

 demo('hive_binning', package = 'ORCH')

 demo(hive_binning)
 ---- ~~~~~~~~~~~~

> #
> # ORACLE R CONNECTOR FOR HADOOP DEMOS
> #

Table 7–9 Functions for Debugging Scripts

Function Description

orch.dbg.lasterr Returns the last error message.

orch.dbg.off Turns off debugging mode.

orch.dbg.on Turns on debugging mode, which prints out the interactions
between Hadoop and Oracle R Advanced Analytics for Hadoop
including the R commands.

orch.dbg.output Directs the output from the debugger.

orch.version Identifies the version of the ORCH package.

orch.debug Enables R style debugging of MapReduce R scripts.

Security Notes for Oracle R Advanced Analytics for Hadoop

Using Oracle R Advanced Analytics for Hadoop 7-17

> # Name: hive_binning.R
> # Description: Demonstrates binning logic in R
> #
> #
 .
 .
 .
If an error occurs, exit from R without saving the workspace image and start a new
session. You should also delete the temporary files created in both the local file system
and the HDFS file system:

rm -r /tmp/orch*
hdfs dfs -rm -r /tmp/orch*

Upon completion run these:

1. hadoop.exec to cleanup or remove all empty part files and Hadoop log files.

2. hadoop.run to allow overwriting of HDFS objects with the same name.

Security Notes for Oracle R Advanced Analytics for Hadoop
Oracle R Advanced Analytics for Hadoop can invoke the Sqoop utility to connect to
Oracle Database either to extract data or to store results.

Sqoop is a command-line utility for Hadoop that imports and exports data between
HDFS or Hive and structured databases. The name Sqoop comes from “SQL to
Hadoop.” The following explains how Oracle R Advanced Analytics for Hadoop
stores a database user password and sends it to Sqoop.

Oracle R Advanced Analytics for Hadoop stores a user password only when the user
establishes the database connection in a mode that does not require reentering the
password each time. The password is stored encrypted in memory. See the Help topic
for orch.connect.

Oracle R Advanced Analytics for Hadoop generates a configuration file for Sqoop and
uses it to invoke Sqoop locally. The file contains the user's database password obtained
by either prompting the user or from the encrypted in-memory representation. The file
has local user access permissions only. The file is created, the permissions are set
explicitly, and then the file is open for writing and filled with data.

Sqoop uses the configuration file to generate custom JAR files dynamically for the
specific database job and passes the JAR files to the Hadoop client software. The
password is stored inside the compiled JAR file; it is not stored in plain text.

The JAR file is transferred to the Hadoop cluster over a network connection. The
network connection and the transfer protocol are specific to Hadoop, such as port
5900.

The configuration file is deleted after Sqoop finishes compiling its JAR files and starts
its own Hadoop jobs.

Security Notes for Oracle R Advanced Analytics for Hadoop

7-18 Oracle Big Data Connectors User's Guide

Index-1

Index

Symbols
%*

put annotation, 4-6
%annotation

See annotations alphabetically by name
%oracle-property annotations, 5-37
%ora-java

binding annotation, 4-8
%output annotation, 5-51
%output encoding annotation, 5-91
%output media-type annotation, 5-91
%updating annotation, 4-6

A
access privileges, Oracle Database, 1-9
adapters

Avro, 5-2
Oracle NoSQL Database, 5-39
sequence file, 5-59
text file, 5-78
tika, 5-88
XML file, 5-95

aggregate function, 7-13
aggregate functions for Hive, 7-13
ALLOW_BACKSLASH_ESCAPING_ANY_

CHARACTER property, 5-26
ALLOW_COMMENTS property, 5-26
ALLOW_NON_NUMERIC_NUMBERS

property, 5-26
ALLOW_NUMERIC_LEADING_ZEROS

property, 5-26
ALLOW_SINGLE_QUOTES property, 5-26
ALLOW_UNQUOTED_CONTROL_CHARS

property, 5-26
ALLOW_UNQUOTED_FIELD_NAMES

property, 5-27
ALTER SESSION commands, 2-39
analytic functions in R, 7-11
analyze-string function, 4-7
annotations

Avro collection, 5-5
equal to Oracle Loader for Hadoop configuration

properties, 5-36
for writing to Oracle NoSQL Database, 5-51

Oracle Database adapter, 5-30
Oracle NoSQL Database adapter, 5-46
parsing tika files, 5-91
reading from Oracle NoSQL Database, 5-49
reading sequence files, 5-64
reading text files, 5-82
reading XML files, 5-98
writing text files, 5-84
See also specific annotations by name

Apache Hadoop distribution, 1-3, 1-4, 1-5, 1-12, 1-17
Apache licenses, 3-42, 3-46
APPEND hint, 2-39
as.ore.* functions, 7-14
Avro

annotations for reading, 5-5
annotations for writing, 5-7

avro
compress annotation, 5-8
file annotation, 5-8
put annotation, 5-7
schema annotation, 5-7
schema-file annotation, 5-7
schema-kv annotation, 5-7, 5-47, 5-49, 5-51

Avro array,
reading as XML, 5-13

Avro file adapter, 5-2
examples, 5-9
reading Avro as XML, 5-11
writing XML as Avro, 5-15

Avro files
collection annotations, 5-5
collection function, 5-5
converting text to, 5-9
functions for reading, 5-3
output file name, 5-8
put functions, 5-7
querying records, 5-9
reading, 5-5
reading as XML, 5-11
writing, 5-7

Avro license, 3-46
Avro maps, 5-3
Avro maps, reading as XML, 5-12
Avro null values, 5-15
Avro primitives

reading as XML, 5-15

Index-2

Avro reader schema, 5-5, 5-7, 5-49
Avro records, reading as XML, 5-11
Avro unions, reading as XML, 5-14
avro:collection-avroxml function, 5-3
avro:get function, 5-3
avroxml method, 5-11, 5-15

B
balancing loads in Oracle Loader for Hadoop, 3-24
bashrc configuration file, 1-17
batchSize property, 5-57
bzip2 input files, 2-32

C
CDH3 distribution, 1-12
character encoding, 5-47, 5-50
character methods for Hive, 7-5
client libraries, 1-12
clients

configuring Hadoop, 1-5, 1-22
coersing data types in R, 7-14
collection annotation

text files, 5-82
tika files, 5-91

collection annotations
Avro, 5-5

collection function (XQuery)
description, 4-4

collection functions
Oracle NoSQL Database adapter, 5-46
sequence files, 5-64
text files, 5-82
tika files, 5-91

collection-tika function, 5-43, 5-61
columnCount property (OSCH), 2-32
columnLength property (OSCH), 2-29, 2-31
columnNames property (OSCH), 2-32
columnType property (OSCH), 2-30, 2-31, 2-34
compressed data files, 2-32
compressed files, 2-33
compression

data in database tables, 2-3
sequence files, 5-66

compression codec, 5-8
compression methods

Avro output files, 5-8
CompressionCodec property (OSCH), 2-32
configuration properties

for Oracle XQuery for Hadoop, 5-36
JSON file adapter, 5-26
Oracle NoSQL Database adapter, 5-56
Oracle XQuery for Hadoop, 4-19

configuration settings
Hadoop client, 1-5, 1-22
Sqoop utility, 1-17

configuring a Hadoop client, 1-5, 1-22
connecting to Oracle Database from R, 7-13
consistency property, 5-57

CREATE SESSION privilege, 1-9
CREATE TABLE

configuration properties, 6-4
examples, 6-5
syntax, 6-3

CREATE TABLE privilege, 1-10
createBadFiles property, 2-37
createLogFiles property, 2-37
CSV files, 2-33, 3-27

D
Data Pump files, 2-10

XML template, 2-10
data type mappings

between XQuery and Avro, 5-15
between XQuery and Oracle Database, 5-31
Oracle Database and XQuery, 5-31

data type mappings, Hive (OSCH), 2-34
data type testing in R, 7-14
data types

Oracle Loader for Hadoop, 3-5
database directories

for Oracle SQL Connector for HDFS, 1-7
database patches, 1-4, 1-11, 2-10
database privileges, 1-9
database system, configuring to run MapReduce

jobs, 1-5
database tables

writing using Oracle XQuery for Hadoop, 5-29
databaseName property, Hive (OSCH), 2-34
dataCompressionCodec property (OSCH), 2-32
dataPathFilter property (OSCH), 2-33
dataPaths property (OSCH), 2-33
dateMask property (OSCH), 2-30, 2-31
defaultDirectory property (OSCH), 2-33
deflate compression, 5-8
delimited text files

XML templates, 2-20
DelimitedTextInputFormat class, 3-11, 3-31, 3-37

Oracle Loader for Hadoop, 3-12
DelimitedTextOutputFormat class, 3-27
delimiter

for splitting text files, 5-82
Direct Connector for HDFS

 See SQL Connector for HDFS
directories

default HDFS for XQuery, 4-18
Oracle SQL Connector for HDFS home, 1-7
Sqoop home, 1-18
See also database directories; root directory

Directory property (OSCH), 2-33
disable_directory_link_check access parameter, 2-10
distributed cache

accessing from Oracle XQuery for Hadoop, 4-8
downloading software, 1-3, 1-4, 1-17, 1-18, 1-22
drivers

JDBC, 1-18, 3-18
ORACLE_DATAPUMP, 3-21
ORACLE_LOADER, 2-24

Index-3

durability property, 5-56

E
encoding characters, 5-47, 5-50
error logging for Oracle XQuery for Hadoop, 4-20
exponential functions (XQuery), 4-7
external tables

about, 2-1
EXTERNAL VARIABLE DATA access

parameter, 2-10
ExternalTable command

syntax, 2-7

F
fieldLength property (OSCH), 2-30, 2-31
fieldTerminator property (OSCH), 2-34
file paths

locating in XQuery, 5-112
fivenum function, 7-13
FLWOR requirements, 4-6
fn

nilled function, 5-12, 5-13
fn functions, 4-7
frame methods for Hive, 7-5
functions

for writing to Oracle NoSQL Database, 5-51
Oracle NoSQL Database, 5-41
parsing tika files, 5-89, 5-91
reading and writing sequence files, 5-60
reading and writing text files, 5-79
reading Avro files, 5-5
reading from Oracle NoSQL Database, 5-46, 5-49
reading JSON files, 5-21
reading sequence files, 5-64
reading text files, 5-82
reading XML files, 5-96, 5-98
writing Avro files, 5-7
writing sequence files, 5-66
writing text files, 5-84

G
generate-id function, 4-7
get function

Oracle NoSQL Database adapter, 5-49
get-tika function, 5-44
gzip input files, 2-32

H
Hadoop client

configuring, 1-5, 1-22
installing, 1-5

HADOOP_HOME environment variable, 1-17
HADOOP_LIBEXEC_DIR environment

variable, 1-17
hadoop.exec function, 7-15
hadoop.jobs function, 7-15
hadoop.run function, 7-15

has-children function, 4-8
HDFS client

See Hadoop client
HDFS commands

issuing from R, 7-12
HDFS data

copying in R, 7-13
hdfs dfs command, 1-5
HDFS directories

creating in R, 7-12
HDFS directory, 4-18
HDFS files

loading data into an Oracle database, 3-14
restrictions in Oracle R Advanced Analytics for

Hadoop, 7-4
hdfs_stream Bash shell script, 1-6
hdfs.attach function, 7-13
hdfs.cd function, 7-12
hdfs.cp function, 7-12
hdfs.describe function, 7-12
hdfs.download function, 7-13
hdfs.exists function, 7-12
hdfs.fromHive function, 7-12
hdfs.get function, 7-14
hdfs.head function, 7-12
hdfs.id function, 7-12
hdfs.ls function, 7-12
hdfs.mkdir function, 7-12
hdfs.mv function, 7-12
hdfs.parts function, 7-12
hdfs.pull function, 7-14
hdfs.push function, 7-14
hdfs.put function, 7-14
hdfs.pwd function, 7-12
hdfs.rm function, 7-12
hdfs.rmdir function, 7-12
hdfs.root function, 7-12
hdfs.sample function, 7-14
hdfs.setroot function, 7-12
hdfs.size function, 7-12
hdfs.tail function, 7-12
hdfs.toHive function, 7-12
hdfs.upload function, 7-14
head function, 4-7
hints for optimizing queries, 2-39
Hive access from R, 7-4
Hive access in R, 7-12
Hive data type mappings (OSCH), 2-34
Hive data types, support for, 7-7
Hive database for Oracle Loader for Hadoop, 1-12
Hive distribution, 1-12
Hive JAR files for Oracle Loader for Hadoop, 3-22
Hive tables

XML format, 2-14
hive.columnType property (OSCH), 2-34
hive.databaseName property (OSCH), 2-34
hive.partitionFilter property, 2-35
hive.tableName property, 2-35
HiveToAvroInputFormat class, 3-13, 3-22
hosts property, 5-58

Index-4

I
IndexedRecord, 3-15
initialFieldEncloser property, 2-35
innermost function, 4-8
InputFormat class

Oracle Loader for Hadoop, 3-12
installation

Apache Hadoop, 1-5
CDH, 1-5
Hadoop client, 1-5
Oracle Data Integrator Application Adapter for

Hadoop, 1-23
Oracle Loader for Hadoop, 1-11
Oracle R Advanced Analytics for Hadoop, 1-16
Oracle SQL Connector for HDFS, 1-4
Sqoop utility, 1-17

installation instructions, 1-1
Instant Client libraries, 1-12
interquartile range, 7-13
IQR function, 7-13
is.hdfs.id function, 7-14
is.ore.* functions, 7-14

J
JDBC drivers, 1-18, 3-18
json

get function, 5-21
parse-as-xml function, 5-21

JSON data formats
converting to XML, 5-28

JSON file adapter
configuration properties, 5-26

JSON files
reading, 5-21

JSON module, 5-20
examples, 5-24

K
kv

collection annotation, 5-46
collection-avroxml function, 5-42
collection-binxml function, 5-42
collection-text function, 5-41
collection-xml function, 5-42
get annotation, 5-49
get-avroxml function, 5-44
get-binxml function, 5-44
get-text function, 5-44
get-xml function, 5-44
key annotation, 5-46, 5-49
key-range function, 5-45
put annotation, 5-51
put-binxml function, 5-43
put-text function, 5-43
put-xml function, 5-43

KVAvroInputFormat class, 3-23
kv.hosts property, 5-40
kv.kvstore property, 5-40

kvstore property, 5-58

L
licenses, 4-20
licenses, third-party, 3-42
load balancing

in Oracle Loader for Hadoop, 3-24
loadCI, 3-24
locationFileCount property, 2-35
log4j.logger.oracle.hadoop.xquery property, 4-20
logDirectory property, 2-35
logical methods for Hive, 7-6

M
mapping

JSON to XML, 5-28
mappings

Oracle Database and XQuery data types, 5-31
mappings, Hive to Oracle Database (OSCH), 2-34
MapReduce functions

writing in R, 7-15
MasterPolicy durability, 5-56
matrix methods for Hive, 7-6
maxLoadFactor property, 3-24
median function, 7-13

N
nilled elements, 5-12
nilled function, 5-15
null values in Avro, 5-15
numeric methods for Hive, 7-6

O
OCI Direct Path, 3-28
OLH_HOME environment variable, 1-12, 1-13, 1-15
operating system user permissions, 1-7
oracle

columns annotation, 5-30
put annotation, 5-30

Oracle Data Integrator Application Adapter for
Hadoop

installing, 1-23
Oracle Database

annotations for writing, 5-30
connecting from R, 7-13
put function, 5-30
user privileges, 1-9

Oracle Database access from ORCH, 7-10
Oracle Database Adapter

using Oracle Loader for Hadoop, 5-29
Oracle Database adapter, 5-29

configuration properties, 5-36
examples, 5-34

Oracle Direct Connector for HDFS
 See Oracle SQL Connector for HDFS

Oracle Exadata Database Machine
installing a Hadoop client, 1-5

Index-5

Oracle Instant Client libraries, 1-12
Oracle Loader for Hadoop

description, 3-1
input formats, 3-14
installing, 1-11
supported database versions, 1-11

Oracle NoSQL Database
annotations for writing, 5-51

Oracle NoSQL Database Adapter
configuration properties, 5-56
examples, 5-52

Oracle NoSQL Database adapter, 5-39
annotations for reading, 5-46
collection function, 5-46
get function, 5-49
reading Avro as XML, 5-11
writing XML as Avro, 5-15

Oracle NoSQL Database functions, 5-41
Oracle OCI Direct Path, 3-27, 3-28
Oracle permissions, 1-7
Oracle R Advanced Analytics for Hadoop

categorical list of functions, 7-10
connecting to Oracle Database, 7-13
copying HDFS data, 7-13
debugging functions, 7-16
description, 1-2, 7-2
HDFS commands issued from, 7-12
installation, 1-16
MapReduce functions, 7-15

Oracle RAC systems, installing a Hadoop client, 1-5
Oracle Software Delivery Cloud, 1-3
Oracle SQL Connector for HDFS

description, 2-1
installation, 1-4
pattern-matching characters, 2-33
query optimization, 2-39

Oracle Technology Network
downloads, 1-3, 1-18

Oracle XQuery for Hadoop, 4-1
accessing the distributed cache, 4-8
accessing user-defined XQuery library modules

and XML schemas, 4-8
basic transformation examples, 4-9
calling custom Java external functions, 4-8
configuration properties, 4-19
configuring Oracle NoSQL Database server, 5-40
description, 4-1
error logging levels, 4-20
error recovery setting, 4-19
hadoop command, 4-13
JSON module, 5-20
Oracle NoSQL Database adapter, 5-39
output directory, 4-19
running queries, 4-13
running queries locally, 4-15
sequence file adapter, 5-59
temp directory, 4-19
text file adapter, 5-78
tika adapter, 5-88
time zone, 4-19

XML file adapter, 5-95
Oracle XQuery for Hadoop adapters

overview, 4-4
Oracle XQuery for Hadoop modules

overview, 4-5
ORACLE_DATAPUMP driver, 3-21
ORACLE_LOADER driver, 2-24
oracle.hadoop.exttab.createBadFiles property, 2-37
oracle.hadoop.exttab.createLogFiles property, 2-37
oracle.hadoop.exttab.hive.tableName property, 2-35
oracle.hadoop.exttab.initialFieldEncloser

property, 2-35
oracle.hadoop.exttab.locationFileCount

property, 2-35
oracle.hadoop.exttab.logDirectory property, 2-35
oracle.hadoop.exttab.preprocessorDirectory

property, 2-36
oracle.hadoop.exttab.recordDelimiter property, 2-36
oracle.hadoop.exttab.sourceType property, 2-36
oracle.hadoop.exttab.stringSizes property, 2-36
oracle.hadoop.exttab.tableName property, 2-37
oracle.hadoop.loader.logBadRecords property, 3-23
oracle.hadoop.loader.rejectLimit property, 3-23
oracle.hadoop.loader.sampler.enableSampling

property, 3-24
oracle.hadoop.xquery.* properties, 4-19
oracle.hadoop.xquery.json.parser.*

See individual properties by name
oracle.hadoop.xquery.kv.config.durability

property, 5-56
oracle.hadoop.xquery.kv.config.requestLimit

property, 5-56
oracle.hadoop.xquery.kv.config.requestTimeout

property, 5-57
oracle.hadoop.xquery.kv.config.socketOpenTimeout

property, 5-57
oracle.hadoop.xquery.kv.config.socketReadTimeout

property, 5-57
oracle.hadoop.xquery.lib.share property, 4-18
oracle.hadoop.xquery.tika.html.asis property, 5-93
oracle.hadoop.xquery.tika.locale property, 5-93
oracle.kv.batchSize property, 5-57
oracle.kv.consistency property, 5-57
oracle.kv.hosts configuration property, 5-56
oracle.kv.hosts property, 5-40, 5-58
oracle.kv.kvstore configuration property, 5-56
oracle.kv.kvstore property, 5-40, 5-58
oracle.kv.timeout property, 5-58
oracle-property annotation, 5-30
orahdfs-version/bin directory, 1-7
orahdfs-version.zip file, 1-6
ora-java

binding annotation, 4-8
OraLoader, 3-21, 3-26
OraLoaderMetadata utility program, 3-9
oraloader-version directory, 1-12, 1-15
oraloader-version.zip file, 1-6, 1-12, 1-13, 1-14
ORCH package

installation, 1-17, 1-18
ORCH package version, 7-16

Index-6

orch.connect function, 7-13
orch.connected function, 7-13
orch.cor function, 7-11
orch.cov function, 7-11
orch.create.parttab function, 7-15
orch.dbcon function, 7-13
orch.dbg.lasterr function, 7-16
orch.dbg.on/off function, 7-16
orch.dbg.output function, 7-16
orch.dbinfo function, 7-13
orch.debug function, 7-16
orch.disconnect function, 7-13
orch.dryrun function, 7-15
orch.export function, 7-15
orch.getXlevels function, 7-11
orch.glm function, 7-11
orch.keyval function, 7-15
orch.keyvals function, 7-15
orch.kmeans function, 7-11
orch.lm function, 7-11
orch.lmf function, 7-11
orch.neural function, 7-11
orch.nmf function, 7-11
orch.nmf.NMFalgo function, 7-11
orch.pack functions, 7-15
orch.princomp function, 7-11
orch.recommend function, 7-11
orch.reconnect function, 7-13
orch.tempPath function, 7-15
orch.tgz package, 1-19
orch.unpack function, 7-15
orch.version function, 7-16
ORE functions for Hive, 7-5
ore.create function, 7-8, 7-12
ore.drop function, 7-12
ore.exec function, 7-8
ore.get function, 7-12
ore.pull function, 7-12
ore.push function, 7-12
ore.recode function, 7-12
ore.warn.order option, 7-9
OSCH_BIN_PATH directory, 1-10
outermost function, 4-8
output

encoding annotation, 5-47, 5-50, 5-64, 5-98
output annotation, 5-67, 5-84
output directory for Oracle XQuery for

Hadoop, 4-19
oxh

find function, 5-112
increment-counter function, 5-112
println function, 5-112
println-xml function, 5-113
property function, 5-113

oxh utility, 4-13
oxh-charset property, 6-4
oxh-column property, 6-4
oxh-default-namespace property, 6-4
oxh-elements property, 6-4
oxh-entity.name property, 6-5

oxh-namespace.prefix property, 6-5
OXMLSerDe, 6-3

P
parallel processing, 1-2, 2-39
parse-xml function, 4-7
parse-xml-fragment function, 4-7
parsing options for JSON files, 5-26
parsing tika files, 5-89
partitioning, 3-5
PathFilter property (OSCH), 2-33
Paths property (OSCH), 2-33
pattern matching, 4-18
pattern matching (OSCH), 2-33
pattern-matching characters in Oracle SQL Connector

for HDFS, 2-33
PQ_DISTRIBUTE hint, 2-39
preprocessor access parameter, 2-10
preprocessorDirectory property, 2-36
privileges, Oracle Database, 1-9
put function (XQuery)

description, 4-4
put functions

Oracle NoSQL Database adapter, 5-51
sequence files, 5-66
text files, 5-84

Q
quantile function, 7-13
queries

running in Oracle XQuery for Hadoop, 4-13
running locally in Oracle XQuery for

Hadoop, 4-15
query optimization for Oracle SQL Connector for

HDFS, 2-39

R
R data types, converting and testing, 7-14
R Distribution, 1-18, 1-22
R distribution, 1-17, 1-21
R functions

categorical listing, 7-10
R functions for Hive, 7-5
random order messages, 7-9
reading Avro files, 5-5
reading sequence files, 5-60
reading text files, 5-79
recordDelimiter property, 2-36
records, rejected, 3-23
rejected records, 3-23
ReplicaAck policy, 5-56
ReplicaPolicy durability, 5-56
requestLimit property, 5-56
requestTimeout property, 5-57

S
sampling data

Index-7

from Oracle Loader for Hadoop, 3-24
scripts

debugging in R, 7-16
sd function, 7-13
seq

collection annotation, 5-64
collection function, 5-60
collection-binxml function, 5-61
collection-xml function, 5-60
compress annotation, 5-66
file annotation, 5-67
key annotation, 5-64
put annotation, 5-66
put functions, 5-62
put-binxml function, 5-63
put-xml function, 5-62
split-max annotation, 5-65
split-min annotation, 5-65

sequence file adapter, 5-59
annotations for writing, 5-66
collection function, 5-64
examples, 5-68

sequence file adapter functions, 5-60
sequence files

compression, 5-66
output file name, 5-67
reading, 5-64
split size, 5-65
writing, 5-66

serialization parameter, 5-51, 5-84
serialization parameters, 5-114
serialize function, 4-7
skiperrors property for Oracle XQuery for

Hadoop, 4-19
skiperrors.counters property, 4-19
skiperrors.log.max property, 4-20
skiperrors.max property, 4-20
snappy compression, 5-8
socketOpenTimeout property, 5-57
socketReadTimeout property, 5-57
software downloads, 1-3, 1-4, 1-17, 1-18, 1-22
sourceType property, 2-36
split size

for Avro files, 5-6
sequence files, 5-65
text files, 5-82

split sizes, 5-6
splitting XML files, 5-99
SQL*Loader, 3-20
Sqoop, 7-10
Sqoop utility

installing on a Hadoop client, 1-22
installing on a Hadoop cluster, 1-17

standard deviation, 7-13
stringSizes property, 2-36
subrange specification, Oracle NoSQL Database

adapter, 5-48

T
tables

compression in database, 2-3
copying data from HDFS, 3-1
writing to Oracle Database, 5-30

tail function, 4-7
temp directory, setting for Oracle XQuery for

Hadoop, 4-19
text

collection annotation, 5-82
collection function, 5-79
collection-xml function, 5-79
compress annotation, 5-84
file annotation, 5-84
put annotation, 5-84
put function, 5-80
put-xml function, 5-80
split annotation, 5-82
split-max annotation, 5-82
trace function, 5-81

text file adapter, 5-78
collection function, 5-82
put function, 5-84

text files
converting to Avro, 5-9
delimiter, 5-82
reading, 5-82
reading and writing, 5-79
split size, 5-82
writing, 5-84

third-party licenses, 3-42, 4-20
tika

%output encoding annotation, 5-91
%output media-type annotation, 5-91
collection annotation, 5-91
collection function, 5-89
helper function, 5-89
parse function, 5-89
parse textual data, 5-89

tika adapter, 5-88
tika file adapter

collection function, 5-91
parsing, 5-89

tika files
parsing, 5-91

time zones in XQuery, 5-33
timeout property, 5-58
timestampMask property (OSCH), 2-30, 2-32
timestampTZMask property (OSCH), 2-31, 2-32
timezone property for Oracle XQuery for

Hadoop, 4-19
trignonometric functions (XQuery), 4-7
Tukey’s five-number summary, 7-13
type mappings

between XQuery and Avro, 5-15
between XQuery and Oracle Database, 5-31

U
uncompressed files, 2-33

Index-8

unparsed-text function, 4-7, 4-8
unparsed-text-available function, 4-7
unparsed-text-lines function, 4-8
unparsed-text-lines functions, 4-7
updating functions, 4-6
UTF-8 encoding, 5-47, 5-50
UTL_FILE package, 1-10

V
var function, 7-13
variance calculation, 7-13
vector methods for Hive, 7-6
version, R software, 7-16

W
wildcards, 4-18
writing Avro files, 5-7
writing sequence files, 5-60
writing text files, 5-79
writing to Oracle tables, 5-29

X
XML

writing as Avro arrays, 5-18
writing as Avro maps, 5-17
writing as Avro primitives, 5-19
writing as Avro records, 5-16
writing as Avro unions, 5-18

XML file adapter, 5-95
examples, 5-101

XML files
reading, 5-96, 5-98
restrictions on splitting, 5-99

XML schemas
accessing user-defined, 4-8

XML template for Data Pump files, 2-10
XML templates

Data Pump files, 2-10
delimited text files, 2-20
Hive tables, 2-14

XML_EXISTS function, 6-15
XML_QUERY function, 6-17
XML_QUERY_AS_primitive function, 6-19
XML_TABLE function, 6-23
xmlf

collection annotation, 5-98
collection functions, 5-96
split annotation, 5-98
split-entity annotation, 5-99
split-max annotation, 5-99
split-min annotation, 5-83, 5-99
split-namespace annotation, 5-98

XQuery
See Oracle XQuery for Hadoop

XQuery library modules
accessing user-defined, 4-8

XQuery specification support, 4-7
XQuery transformations

requirements, 4-6
xquery.output property, 4-19
xquery.scratch property, 4-19
xquery.skiperrors property, 4-19
xquery.skiperrors.counters property, 4-19
xquery.skiperrors.log.max property, 4-20
xquery.skiperrors.max property, 4-20
xquery.timezone property, 4-19
xsi

nil attribute, 5-12

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Text Conventions
	Syntax Conventions

	Changes in This Release for Oracle Big Data Connectors User's Guide
	Changes in Oracle Big Data Connectors Release 4 (4.1)
	Changes in Oracle Big Data Connectors Release 4 (4.0)

	Part I Setup
	1 Getting Started with Oracle Big Data Connectors
	About Oracle Big Data Connectors
	Big Data Concepts and Technologies
	What is MapReduce?
	What is Apache Hadoop?

	Downloading the Oracle Big Data Connectors Software
	Oracle SQL Connector for Hadoop Distributed File System Setup
	Software Requirements
	Installing and Configuring a Hadoop Client on the Oracle Database System
	Installing Oracle SQL Connector for HDFS
	Granting User Privileges in Oracle Database
	Setting Up User Accounts on the Oracle Database System
	Using Oracle SQL Connector for HDFS on a Secure Hadoop Cluster

	Oracle Loader for Hadoop Setup
	Software Requirements
	Installing Oracle Loader for Hadoop
	Providing Support for Offline Database Mode
	Using Oracle Loader for Hadoop on a Secure Hadoop Cluster

	Oracle XQuery for Hadoop Setup
	Software Requirements
	Installing Oracle XQuery for Hadoop
	Troubleshooting the File Paths
	Configuring Oozie for the Oracle XQuery for Hadoop Action

	Oracle R Advanced Analytics for Hadoop Setup
	Installing the Software on Hadoop
	Software Requirements for a Third-Party Hadoop Cluster
	Installing Sqoop on a Third-Party Hadoop Cluster
	Installing Hive on a Third-Party Hadoop Cluster
	Installing R on a Third-Party Hadoop Cluster
	Installing the ORCH Package on a Third-Party Hadoop Cluster

	Installing Additional R Packages
	Providing Remote Client Access to R Users
	Software Requirements for Remote Client Access
	Configuring the Server as a Hadoop Client
	Installing Sqoop on a Hadoop Client
	Installing R on a Hadoop Client
	Installing the ORCH Package on a Hadoop Client
	Installing the Oracle R Enterprise Client Packages (Optional)

	Oracle Data Integrator

	Part II Oracle Database Connectors
	2 Oracle SQL Connector for Hadoop Distributed File System
	About Oracle SQL Connector for HDFS
	Getting Started With Oracle SQL Connector for HDFS
	Configuring Your System for Oracle SQL Connector for HDFS
	Using Oracle SQL Connector for HDFS with Oracle Big Data Appliance and Oracle Exadata
	Using the ExternalTable Command-Line Tool
	About ExternalTable
	ExternalTable Command-Line Tool Syntax

	Creating External Tables
	Creating External Tables with the ExternalTable Tool
	Creating External Tables from Data Pump Format Files
	Required Properties
	Optional Properties
	Defining Properties in XML Files for Data Pump Format Files
	Example

	Creating External Tables from Hive Tables
	Hive Table Requirements
	Data Type Mappings
	Required Properties
	Optional Properties
	Defining Properties in XML Files for Hive Tables
	Example
	Creating External Tables from Partitioned Hive Tables
	Database Objects that Support Access to Partitioned Hive Tables
	Querying the Metadata Table
	Creating UNION ALL Views for Querying
	Error Messages
	Dropping Dangling Objects

	Creating External Tables from Delimited Text Files
	Data Type Mappings
	Required Properties
	Optional Properties
	Defining Properties in XML Files for Delimited Text Files
	Example

	Creating External Tables in SQL

	Publishing the HDFS Data Paths
	ExternalTable Syntax for Publish
	ExternalTable Example for Publish

	Exploring External Tables and Location Files
	ExternalTable Syntax for Describe
	ExternalTable Example for Describe

	Dropping Database Objects Created by Oracle SQL Connector for HDFS
	ExternalTable Syntax for Drop
	ExternalTable Example for Drop

	More About External Tables Generated by the ExternalTable Tool
	About Configurable Column Mappings
	Default Column Mappings
	All Column Overrides
	One Column Overrides
	Mapping Override Examples

	What Are Location Files?
	Enabling Parallel Processing
	Setting Up the Degree of Parallelism

	Location File Management
	Location File Names

	Configuring Oracle SQL Connector for HDFS
	Creating a Configuration File
	Oracle SQL Connector for HDFS Configuration Property Reference

	Performance Tips for Querying Data in HDFS

	3 Oracle Loader for Hadoop
	What Is Oracle Loader for Hadoop?
	About the Modes of Operation
	Online Database Mode
	Offline Database Mode

	Getting Started With Oracle Loader for Hadoop
	Creating the Target Table
	Supported Data Types for Target Tables
	Supported Partitioning Strategies for Target Tables
	Compression

	Creating a Job Configuration File
	About the Target Table Metadata
	Providing the Connection Details for Online Database Mode
	Generating the Target Table Metadata for Offline Database Mode
	OraLoaderMetadata Utility

	About Input Formats
	Delimited Text Input Format
	About DelimitedTextInputFormat
	Required Configuration Properties
	Optional Configuration Properties

	Complex Text Input Formats
	About RegexInputFormat
	Required Configuration Properties
	Optional Configuration Properties

	Hive Table Input Format
	About HiveToAvroInputFormat
	Required Configuration Properties
	Optional Configuration Properties

	Avro Input Format
	Configuration Properties

	Oracle NoSQL Database Input Format
	About KVAvroInputFormat
	Required Configuration Properties

	Custom Input Formats
	About Implementing a Custom Input Format
	About Error Handling
	Supporting Data Sampling
	InputFormat Source Code Example

	Mapping Input Fields to Target Table Columns
	Automatic Mapping
	Manual Mapping
	Converting a Loader Map File

	About Output Formats
	JDBC Output Format
	About JDBCOutputFormat
	Configuration Properties

	Oracle OCI Direct Path Output Format
	About OCIOutputFormat
	Configuration Properties

	Delimited Text Output Format
	About DelimitedTextOutputFormat
	Configuration Properties

	Oracle Data Pump Output Format
	About DataPumpOutputFormat

	Running a Loader Job
	Specifying Hive Input Format JAR Files
	Specifying Oracle NoSQL Database Input Format JAR Files
	Job Reporting

	Handling Rejected Records
	Logging Rejected Records in Bad Files
	Setting a Job Reject Limit

	Balancing Loads When Loading Data into Partitioned Tables
	Using the Sampling Feature
	Tuning Load Balancing
	Tuning Sampling Behavior
	When Does Oracle Loader for Hadoop Use the Sampler's Partitioning Scheme?
	Resolving Memory Issues
	What Happens When a Sampling Feature Property Has an Invalid Value?

	Optimizing Communications Between Oracle Engineered Systems
	Oracle Loader for Hadoop Configuration Property Reference
	Third-Party Licenses for Bundled Software
	Apache Licensed Code
	Apache Avro 1.7.3
	Apache Commons Mathematics Library 2.2
	Apache Hadoop 0.20.0
	Jackson JSON 1.8.8

	Part III Oracle XQuery for Hadoop
	4 Using Oracle XQuery for Hadoop
	What Is Oracle XQuery for Hadoop?
	Getting Started With Oracle XQuery for Hadoop
	Basic Steps
	Example: Hello World!

	About the Oracle XQuery for Hadoop Functions
	About the Adapters
	About Other Modules for Use With Oracle XQuery for Hadoop

	Creating an XQuery Transformation
	XQuery Transformation Requirements
	About XQuery Language Support
	Accessing Data in the Hadoop Distributed Cache
	Calling Custom Java Functions from XQuery
	Accessing User-Defined XQuery Library Modules and XML Schemas
	XQuery Transformation Examples

	Running Queries
	Oracle XQuery for Hadoop Options
	Generic Options
	About Running Queries Locally

	Running Queries from Apache Oozie
	Getting Started Using the Oracle XQuery for Hadoop Oozie Action
	Supported XML Elements
	Example: Hello World

	Oracle XQuery for Hadoop Configuration Properties
	Third-Party Licenses for Bundled Software
	Apache Licensed Code
	ANTLR 3.2
	Apache Ant 1.7.1
	Apache Xerces 2.9.1
	Apache XMLBeans 2.3, 2.5
	Jackson 1.8.8
	Woodstox XML Parser 4.2.0

	5 Oracle XQuery for Hadoop Reference
	Avro File Adapter
	Built-in Functions for Reading Avro Files
	avro:collection-avroxml
	avro:get

	Custom Functions for Reading Avro Container Files
	Custom Functions for Writing Avro Files
	Examples of Avro File Adapter Functions
	About Converting Values Between Avro and XML
	Reading Avro as XML
	Reading Records
	Reading Maps
	Reading Arrays
	Reading Unions
	Reading Primitives

	Writing XML as Avro
	Writing Records
	Writing Maps
	Writing Arrays
	Writing Unions
	Writing Primitives

	JSON File Adapter
	Built-in Functions for Reading JSON
	json:collection-jsonxml
	json:parse-as-xml
	json:get

	Custom Functions for Reading JSON Files
	Examples of JSON Functions
	JSON File Adapter Configuration Properties
	About Converting JSON Data Formats to XML
	About Converting JSON Objects to XML
	About Converting JSON Arrays to XML
	About Converting Other JSON Types

	Oracle Database Adapter
	Custom Functions for Writing to Oracle Database
	Examples of Oracle Database Adapter Functions
	Oracle Loader for Hadoop Configuration Properties and Corresponding %oracle-property Annotations

	Oracle NoSQL Database Adapter
	Prerequisites for Using the Oracle NoSQL Database Adapter
	Built-in Functions for Reading from and Writing to Oracle NoSQL Database
	kv:collection-text
	kv:collection-avroxml
	kv:collection-xml
	kv:collection-binxml
	kv:collection-tika
	kv:put-text
	kv:put-xml
	kv:put-binxml
	kv:get-text
	kv:get-avroxml
	kv:get-xml
	kv:get-binxml
	kv:get-tika
	kv:key-range
	kv:key-range

	Custom Functions for Reading Values from Oracle NoSQL Database
	Custom Functions for Retrieving Single Values from Oracle NoSQL Database
	Custom Functions for Writing to Oracle NoSQL Database
	Examples of Oracle NoSQL Database Adapter Functions
	Oracle NoSQL Database Adapter Configuration Properties

	Sequence File Adapter
	Built-in Functions for Reading and Writing Sequence Files
	seq:collection
	seq:collection-xml
	seq:collection-binxml
	seq:collection-tika
	seq:put
	seq:put-xml
	seq:put-binxml

	Custom Functions for Reading Sequence Files
	Custom Functions for Writing Sequence Files
	Examples of Sequence File Adapter Functions

	Solr Adapter
	Prerequisites for Using the Solr Adapter
	Configuration Settings
	Example Query Using the Solr Adapter

	Built-in Functions for Loading Data into Solr Servers
	solr:put

	Custom Functions for Loading Data into Solr Servers
	Examples of Solr Adapter Functions
	Solr Adapter Configuration Properties

	Text File Adapter
	Built-in Functions for Reading and Writing Text Files
	text:collection
	text:collection-xml
	text:put
	text:put-xml
	text:trace

	Custom Functions for Reading Text Files
	Custom Functions for Writing Text Files
	Examples of Text File Adapter Functions

	Tika File Adapter
	Built-in Library Functions for Parsing Files with Tika
	tika:collection
	tika:parse

	Custom Functions for Parsing Files with Tika
	Tika Parser Output Format
	Tika Adapter Configuration Properties
	Examples of Tika File Adapter Functions

	XML File Adapter
	Built-in Functions for Reading XML Files
	xmlf:collection (Single Task)
	xmlf:collection (Multiple Tasks)

	Custom Functions for Reading XML Files
	Examples of XML File Adapter Functions

	Utility Module
	Duration, Date, and Time Functions
	ora-fn:date-from-string-with-format
	ora-fn:date-to-string-with-format
	ora-fn:dateTime-from-string-with-format
	ora-fn:dateTime-to-string-with-format
	ora-fn:time-from-string-with-format
	ora-fn:time-to-string-with-format
	Format Argument
	Locale Argument

	String Functions
	ora-fn:pad-left
	ora-fn:pad-right
	ora-fn:trim
	ora-fn:trim-left
	ora-fn:trim-right

	Hadoop Module
	Built-in Functions for Using Hadoop
	oxh:find
	oxh:increment-counter
	oxh:println
	oxh:println-xml
	oxh:property

	Serialization Annotations

	6 Oracle XML Extensions for Hive
	What are the XML Extensions for Hive?
	Using the Hive Extensions
	About the Hive Functions
	Creating XML Tables
	Hive CREATE TABLE Syntax for XML Tables
	CREATE TABLE Configuration Properties
	CREATE TABLE Examples
	Syntax Example
	Simple Examples
	OpenStreetMap Examples

	Oracle XML Functions for Hive Reference
	Data Type Conversions
	Hive Access to External Files

	Online Documentation of Functions
	xml_exists
	xml_query
	xml_query_as_primitive
	xml_table

	Part IV Oracle R Advanced Analytics for Hadoop
	7 Using Oracle R Advanced Analytics for Hadoop
	About Oracle R Advanced Analytics for Hadoop
	Oracle R Advanced Analytics for Hadoop Architecture
	Oracle R Advanced Analytics for Hadoop packages and functions
	Oracle R Advanced Analytics for Hadoop APIs
	Inputs to Oracle R Advanced Analytics for Hadoop

	Access to HDFS Files
	Access to Apache Hive
	ORCH Functions for Hive
	ORE Functions for Hive
	Generic R Functions Supported in Hive
	Support for Hive Data Types
	Usage Notes for Hive Access
	Example: Loading Hive Tables into Oracle R Advanced Analytics for Hadoop

	Access to Oracle Database
	Usage Notes for Oracle Database Access
	Scenario for Using Oracle R Advanced Analytics for Hadoop with Oracle R Enterprise

	Oracle R Advanced Analytics for Hadoop Functions
	Native Analytical Functions
	Using the Hadoop Distributed File System (HDFS)
	Using Apache Hive
	Using Aggregate Functions in Hive
	Making Database Connections
	Copying Data and Working with HDFS Files
	Converting to R Data Types
	Using MapReduce
	Debugging Scripts

	Demos of Oracle R Advanced Analytics for Hadoop Functions
	Security Notes for Oracle R Advanced Analytics for Hadoop

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

