

[1] Oracle® Big Data Appliance
Software User's Guide

Release 4 (4.1)

E57351-03

February 2015

Describes the Oracle Big Data Appliance software available
to administrators and software developers.

Oracle Big Data Appliance Software User's Guide, Release 4 (4.1)

E57351-03

Copyright © 2011, 2015, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Cloudera, Cloudera CDH, and Cloudera Manager are registered and unregistered trademarks of Cloudera,
Inc.

iii

Contents

Preface ... ix

Audience... ix
Documentation Accessibility ... ix
Related Documents ... ix
Conventions ... x
Backus-Naur Form Syntax ... x

1 Introducing Oracle Big Data Appliance

What Is Big Data? ... 1-1
High Variety.. 1-1
High Complexity.. 1-2
High Volume... 1-2
High Velocity .. 1-2

The Oracle Big Data Solution .. 1-2
Software for Big Data .. 1-3

Software Component Overview .. 1-4
Acquiring Data for Analysis .. 1-5

Hadoop Distributed File System.. 1-5
Apache Hive ... 1-5
Oracle NoSQL Database.. 1-5

Organizing Big Data .. 1-6
MapReduce ... 1-7
Oracle Big Data SQL .. 1-7
Oracle Big Data Connectors.. 1-7
Oracle R Support for Big Data.. 1-9

Analyzing and Visualizing Big Data.. 1-9

2 Administering Oracle Big Data Appliance

Monitoring Multiple Clusters Using Oracle Enterprise Manager ... 2-1
Using the Enterprise Manager Web Interface.. 2-1
Using the Enterprise Manager Command-Line Interface.. 2-2

Managing Operations Using Cloudera Manager... 2-3
Monitoring the Status of Oracle Big Data Appliance ... 2-3
Performing Administrative Tasks ... 2-4
Managing CDH Services With Cloudera Manager... 2-4

iv

Using Hadoop Monitoring Utilities ... 2-5
Monitoring MapReduce Jobs.. 2-5
Monitoring the Health of HDFS... 2-6

Using Cloudera Hue to Interact With Hadoop ... 2-6
About the Oracle Big Data Appliance Software .. 2-7

Software Components ... 2-8
Unconfigured Software ... 2-9
Allocating Resources Among Services... 2-10

About the CDH Software Services .. 2-10
Where Do the Services Run on a Single-Rack CDH Cluster? ... 2-10
Where Do the Services Run on a Multirack CDH Cluster? .. 2-11
About MapReduce .. 2-12
Automatic Failover of the NameNode... 2-12
Automatic Failover of the ResourceManager ... 2-13
Map and Reduce Resource Configuration .. 2-14

Effects of Hardware on Software Availability .. 2-15
Logical Disk Layout .. 2-15
Critical and Noncritical CDH Nodes ... 2-15
First NameNode Node ... 2-16
Second NameNode Node .. 2-17
First ResourceManager Node.. 2-17
Second ResourceManager Node ... 2-17
Noncritical CDH Nodes ... 2-17

Managing a Hardware Failure .. 2-18
About Oracle NoSQL Database Clusters... 2-18
Prerequisites for Managing a Failing Node .. 2-18
Managing a Failing CDH Critical Node .. 2-19
Managing a Failing Noncritical Node.. 2-19

Stopping and Starting Oracle Big Data Appliance... 2-20
Prerequisites... 2-20
Stopping Oracle Big Data Appliance ... 2-20
Starting Oracle Big Data Appliance.. 2-22

Managing Oracle Big Data SQL ... 2-24
Adding and Removing the Oracle Big Data SQL Service ... 2-24
Allocating Resources to Oracle Big Data SQL .. 2-24

Security on Oracle Big Data Appliance .. 2-25
About Predefined Users and Groups... 2-26
About User Authentication.. 2-26
About Fine-Grained Authorization.. 2-27
About On-Disk Encryption.. 2-27
Port Numbers Used on Oracle Big Data Appliance... 2-27
About Puppet Security ... 2-28

Auditing Oracle Big Data Appliance .. 2-28
About Oracle Audit Vault and Database Firewall ... 2-29
Setting Up the Oracle Big Data Appliance Plug-in .. 2-29
Monitoring Oracle Big Data Appliance ... 2-30

Collecting Diagnostic Information for Oracle Customer Support .. 2-31

v

3 Supporting User Access to Oracle Big Data Appliance

About Accessing a Kerberos-Secured Cluster .. 3-1
Providing Remote Client Access to CDH .. 3-2

Prerequisites.. 3-2
Installing a CDH Client on Any Supported Operating System .. 3-3
Configuring a CDH Client for an Unsecured Cluster .. 3-3
Configuring a CDH Client for a Kerberos-Secured Cluster .. 3-4
Verifying Access to a Cluster from the CDH Client ... 3-5

Providing Remote Client Access to Hive... 3-6
Managing User Accounts .. 3-8

Creating Hadoop Cluster Users... 3-8
Providing User Login Privileges (Optional) .. 3-9

Recovering Deleted Files ... 3-10
Restoring Files from the Trash .. 3-10
Changing the Trash Interval.. 3-11
Disabling the Trash Facility ... 3-11

4 Configuring Oracle Exadata Database Machine for Use with Oracle Big Data
Appliance

About Optimizing Communications.. 4-1
About Applications that Pull Data Into Oracle Exadata Database Machine............................. 4-1
About Applications that Push Data Into Oracle Exadata Database Machine 4-2

Prerequisites for Optimizing Communications ... 4-2
Specifying the InfiniBand Connections to Oracle Big Data Appliance .. 4-2
Specifying the InfiniBand Connections to Oracle Exadata Database Machine........................... 4-3
Enabling SDP on Exadata Database Nodes .. 4-4
Creating an SDP Listener on the InfiniBand Network... 4-5

5 Optimizing MapReduce Jobs Using Perfect Balance

What is Perfect Balance? ... 5-1
About Balancing Jobs Across Map and Reduce Tasks ... 5-2
Ways to Use Perfect Balance Features... 5-2
Perfect Balance Components .. 5-2

Application Requirements ... 5-2
Getting Started with Perfect Balance ... 5-3
Analyzing a Job's Reducer Load.. 5-4

About Job Analyzer ... 5-4
Running Job Analyzer as a Standalone Utility .. 5-4
Running Job Analyzer Using Perfect Balance.. 5-6
Reading the Job Analyzer Report .. 5-8

About Configuring Perfect Balance .. 5-9
Running a Balanced MapReduce Job Using Perfect Balance ... 5-10
About Perfect Balance Reports ... 5-12
About Chopping .. 5-13

Selecting a Chopping Method... 5-13
How Chopping Impacts Applications ... 5-14

vi

Troubleshooting Jobs Running with Perfect Balance.. 5-14
Using the Perfect Balance API .. 5-15

Modifying Your Java Code to Use Perfect Balance .. 5-15
Running Your Modified Java Code with Perfect Balance ... 5-16

About the Perfect Balance Examples ... 5-17
About the Examples in This Chapter ... 5-17
Extracting the Example Data Set... 5-18

Perfect Balance Configuration Property Reference .. 5-18

6 Using Oracle Big Data SQL for Data Access

What Is Oracle Big Data SQL? ... 6-1
About Oracle External Tables... 6-2
About the Access Drivers for Oracle Big Data SQL .. 6-2
About Smart Scan Technology... 6-2
About Data Security with Oracle Big Data SQL.. 6-2

Installing Oracle Big Data SQL ... 6-3
Prerequisites for Using Oracle Big Data SQL 1.1... 6-3
Performing the Installation... 6-3
Running the Post-Installation Script for Oracle Big Data SQL.. 6-4

Creating an Oracle External Table for Hive Data .. 6-5
Obtaining Information About a Hive Table... 6-5
Using the CREATE_EXTDDL_FOR_HIVE Function.. 6-6
Developing a CREATE TABLE Statement for ORACLE_HIVE ... 6-7

Creating an Oracle External Table for Oracle NoSQL Database .. 6-8
Creating a Hive External Table for Oracle NoSQL Database .. 6-8
Creating the Oracle Database Table for Oracle NoSQL Data .. 6-9
About Column Data Type Mappings... 6-10
Example of Accessing Data in Oracle NoSQL Database ... 6-10

Creating an Oracle External Table for Apache HBase ... 6-13
Creating a Hive External Table for HBase... 6-13
Creating the Oracle Database Table for HBase... 6-14

Creating an Oracle External Table for HDFS Files ... 6-14
Using the Default Access Parameters with ORACLE_HDFS... 6-14
Overriding the Default ORACLE_HDFS Settings.. 6-15

About the SQL CREATE TABLE Statement .. 6-16
Basic Syntax.. 6-16
About the External Table Clause .. 6-16

About Data Type Conversions ... 6-18
Querying External Tables .. 6-19

Granting User Access ... 6-19
About Error Handling .. 6-19
About the Log Files ... 6-20

About Oracle Big Data SQL on Oracle Exadata Database Machine .. 6-20
Starting and Stopping the Big Data SQL Agent ... 6-20
About the Common Directory .. 6-20
Common Configuration Properties.. 6-20
About the Cluster Directory .. 6-23

vii

About Permissions .. 6-23

7 Oracle Big Data SQL Reference

DBMS_HADOOP PL/SQL Package ... 7-2
CREATE TABLE ACCESS PARAMETERS Clause ... 7-5
Static Data Dictionary Views for Hive.. 7-23

8 Copying Oracle Tables to Hadoop

What Is Copy to BDA?... 8-1
Getting Started Using Copy to BDA .. 8-1
Installing Copy to BDA... 8-2

Prerequisites for Copy to BDA... 8-2
Installing Copy to BDA on Oracle Big Data Appliance.. 8-2
Installing Copy to BDA on Oracle Exadata Database Machine .. 8-2

Generating the Data Pump Files ... 8-2
About Data Pump Format Files ... 8-3
Identifying the Target Directory .. 8-3
About the CREATE TABLE Syntax ... 8-3
Copying the Files to HDFS ... 8-4

Creating a Hive Table.. 8-4
About Hive External Tables.. 8-4
About Column Mappings ... 8-4
About Data Type Conversions... 8-5

Example Using the Sample Schemas.. 8-5
About the Sample Data ... 8-5
Creating the EXPDIR Database Directory .. 8-6
Creating Data Pump Format Files for Customer Data ... 8-6
Verifying the Contents of the Data Files... 8-7
Copying the Files into Hadoop .. 8-7
Creating a Hive External Table .. 8-8
Querying the Data in Hive.. 8-8

Glossary

Index

viii

ix

Preface

The Oracle Big Data Appliance Software User's Guide describes how to manage and use
the installed software.

Audience
This guide is intended for users of Oracle Big Data Appliance including:

■ Application developers

■ Data analysts

■ Data scientists

■ Database administrators

■ System administrators

The Oracle Big Data Appliance Software User's Guide introduces Oracle Big Data
Appliance installed software, features, concepts, and terminology. However, you must
acquire the necessary information about administering Hadoop clusters and writing
MapReduce programs from other sources.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents:

■ Oracle Big Data Appliance Perfect Balance Java API Reference

■ Oracle Enterprise Manager System Monitoring Plug-in Installation Guide for Oracle Big
Data Appliance

■ Oracle Big Data Appliance Owner's Guide

x

■ Oracle Big Data Connectors User's Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

prompt The pound (#) prompt indicates a command that is run as the Linux
root user.

Backus-Naur Form Syntax
The syntax in this reference is presented in a simple variation of Backus-Naur Form
(BNF) that uses the following symbols and conventions:

Symbol or Convention Description

[] Brackets enclose optional items.

{ } Braces enclose a choice of items, only one of which is required.

| A vertical bar separates alternatives within brackets or braces.

... Ellipses indicate that the preceding syntactic element can be
repeated.

delimiters Delimiters other than brackets, braces, and vertical bars must be
entered as shown.

boldface Words appearing in boldface are keywords. They must be typed as
shown. (Keywords are case-sensitive in some, but not all,
operating systems.) Words that are not in boldface are
placeholders for which you must substitute a name or value.

Part I
Part I Administration

This part describes Oracle Big Data Appliance and provides instructions for routine
administrative tasks. It contains the following chapters:

■ Chapter 1, "Introducing Oracle Big Data Appliance"

■ Chapter 2, "Administering Oracle Big Data Appliance"

■ Chapter 3, "Supporting User Access to Oracle Big Data Appliance"

■ Chapter 4, "Configuring Oracle Exadata Database Machine for Use with Oracle Big
Data Appliance"

1

Introducing Oracle Big Data Appliance 1-1

1Introducing Oracle Big Data Appliance

This chapter presents an overview of Oracle Big Data Appliance and describes the
software installed on the system. This chapter contains the following sections:

■ What Is Big Data?

■ The Oracle Big Data Solution

■ Software for Big Data

■ Acquiring Data for Analysis

■ Organizing Big Data

■ Analyzing and Visualizing Big Data

What Is Big Data?
Using transactional data as the source of business intelligence has been commonplace
for many years. As digital technology and the World Wide Web spread into every
aspect of modern life, other sources of data can make important contributions to
business decision making. Many businesses are looking to these new data sources.
They are finding opportunities in analyzing vast amounts of data that until recently
was discarded.

Big data is characterized by:

■ A variety of data sources: High Variety

■ A complexity of data types:High Complexity

■ A high volume of data flow: High Volume

■ A high velocity of data transactions: High Velocity

These characteristics pinpoint the challenges in deriving value from big data, and the
differences between big data and traditional data sources that primarily provide
highly structured, transactional data.

High Variety
Big data is derived from a variety of sources, such as:

■ Equipment sensors: Medical, manufacturing, transportation, and other machine
sensor transmissions

■ Machines: Call detail records, web logs, smart meter readings, Global Positioning
System (GPS) transmissions, and trading systems records

The Oracle Big Data Solution

1-2 Oracle Big Data Appliance Software User's Guide

■ Social media: Data streams from social media sites such as Facebook and blogging
sites such as Twitter

Analysts can mine this data repeatedly as they devise new ways of extracting
meaningful insights. What seems irrelevant today might prove to be highly pertinent
to your business tomorrow.

Challenge: Delivering flexible systems to handle this high variety

High Complexity
As the variety of data types increases, the complexity of the system increases. The
complexity of data types also increases in big data because of its low structure.

Challenge: Finding solutions that apply across a broad range of data types.

High Volume
Social media can generate terabytes of daily data. Equipment sensors and other
machines can generate that much data in less than an hour.

Even traditional data sources for data warehouses, such as customer profiles from
customer relationship management (CRM) systems, transactional enterprise resource
planning (ERP) data, store transactions, and general ledger data, have increased
tenfold in volume over the past decade.

Challenge: Providing scalability and ease in growing the system

High Velocity
Huge numbers of sensors, web logs, and other machine sources generate data
continuously and at a much higher speed than traditional sources, such as individuals
entering orders into a transactional database.

Challenge: Handling the data at high speed without stressing the structured systems

The Oracle Big Data Solution
Oracle Big Data Appliance is an engineered system comprising both hardware and
software components. The hardware is optimized to run the enhanced big data
software components.

Oracle Big Data Appliance delivers:

■ A complete and optimized solution for big data

■ Single-vendor support for both hardware and software

■ An easy-to-deploy solution

■ Tight integration with Oracle Database and Oracle Exadata Database Machine

Oracle provides a big data platform that captures, organizes, and supports deep
analytics on extremely large, complex data streams flowing into your enterprise from
many data sources. You can choose the best storage and processing location for your
data depending on its structure, workload characteristics, and end-user requirements.

Oracle Database enables all data to be accessed and analyzed by a large user
community using identical methods. By adding Oracle Big Data Appliance in front of
Oracle Database, you can bring new sources of information to an existing data
warehouse. Oracle Big Data Appliance is the platform for acquiring and organizing

Software for Big Data

Introducing Oracle Big Data Appliance 1-3

big data so that the relevant portions with true business value can be analyzed in
Oracle Database.

For maximum speed and efficiency, Oracle Big Data Appliance can be connected to
Oracle Exadata Database Machine running Oracle Database. Oracle Exadata Database
Machine provides outstanding performance in hosting data warehouses and
transaction processing databases. Moreover, Oracle Exadata Database Machine can be
connected to Oracle Exalytics In-Memory Machine for the best performance of
business intelligence and planning applications. The InfiniBand connections between
these engineered systems provide high parallelism, which enables high-speed data
transfer for batch or query workloads.

Figure 1–1 shows the relationships among these engineered systems.

Figure 1–1 Oracle Engineered Systems for Big Data

Social media
Blogs
Smart phones
Meters
Sensors
Web logs
Trading systems
GPS signals

InfiniBand

InfiniBand

Oracle Big Data
Appliance

Oracle
Exadata

Oracle
Exalytics

Analyze & Visualize

Organize

Acquire

Stream

Software for Big Data
The Oracle Linux operating system and Cloudera's Distribution including Apache
Hadoop (CDH) underlie all other software components installed on Oracle Big Data
Appliance. CDH is an integrated stack of components that have been tested and
packaged to work together.

CDH has a batch processing infrastructure that can store files and distribute work
across a set of computers. Data is processed on the same computer where it is stored.
In a single Oracle Big Data Appliance rack, CDH distributes the files and workload
across 18 servers, which compose a cluster. Each server is a node in the cluster.

The software framework consists of these primary components:

Software for Big Data

1-4 Oracle Big Data Appliance Software User's Guide

■ File system: The Hadoop Distributed File System (HDFS) is a highly scalable file
system that stores large files across multiple servers. It achieves reliability by
replicating data across multiple servers without RAID technology. It runs on top of
the Linux file system on Oracle Big Data Appliance.

■ MapReduce engine: The MapReduce engine provides a platform for the
massively parallel execution of algorithms written in Java. Oracle Big Data
Appliance 3.0 runs YARN by default.

■ Administrative framework: Cloudera Manager is a comprehensive
administrative tool for CDH. In addition, you can use Oracle Enterprise Manager
to monitor both the hardware and software on Oracle Big Data Appliance.

■ Apache projects: CDH includes Apache projects for MapReduce and HDFS, such
as Hive, Pig, Oozie, ZooKeeper, HBase, Sqoop, and Spark.

■ Cloudera applications: Oracle Big Data Appliance installs all products included in
Cloudera Enterprise Data Hub Edition, including Impala, Search, and Navigator.

CDH is written in Java, and Java is the language for applications development.
However, several CDH utilities and other software available on Oracle Big Data
Appliance provide graphical, web-based, and other language interfaces for ease of use.

Software Component Overview
The major software components perform three basic tasks:

■ Acquire

■ Organize

■ Analyze and visualize

The best tool for each task depends on the density of the information and the degree of
structure. Figure 1–2 shows the relationships among the tools and identifies the tasks
that they perform.

Figure 1–2 Oracle Big Data Appliance Software Overview

Acquire Organize Analyze

Oracle Big Data Appliance

Data Variety

Big Data

Schema

Information
Density

HDFS

Oracle
NoSQL
Database

CDH

Oracle Database
(Data Warehouse)

In-Database Analytics

Oracle Advanced Analytics
Oracle R Enterprise
Data Mining

Oracle Business
Intelligence

Oracle Data Integrator

Oracle Big Data
Connectors

Oracle Big Data
SQL

Oracle Database
(Transactional)

Acquiring Data for Analysis

Introducing Oracle Big Data Appliance 1-5

Acquiring Data for Analysis
Databases used for online transaction processing (OLTP) are the traditional data
sources for data warehouses. The Oracle solution enables you to analyze traditional
data stores with big data in the same Oracle data warehouse. Relational data continues
to be an important source of business intelligence, although it runs on separate
hardware from Oracle Big Data Appliance.

Oracle Big Data Appliance provides these facilities for capturing and storing big data:

■ Hadoop Distributed File System

■ Apache Hive

■ Oracle NoSQL Database

Hadoop Distributed File System
Cloudera's Distribution including Apache Hadoop (CDH) on Oracle Big Data
Appliance uses the Hadoop Distributed File System (HDFS). HDFS stores extremely
large files containing record-oriented data. On Oracle Big Data Appliance, HDFS splits
large data files into chunks of 256 megabytes (MB), and replicates each chunk across
three different nodes in the cluster. The size of the chunks and the number of
replications are configurable.

Chunking enables HDFS to store files that are larger than the physical storage of one
server. It also allows the data to be processed in parallel across multiple computers
with multiple processors, all working on data that is stored locally. Replication ensures
the high availability of the data: if a server fails, the other servers automatically take
over its work load.

HDFS is typically used to store all types of big data.

See Also:

■ For conceptual information about Hadoop technologies, refer to
this third-party publication:

Hadoop: The Definitive Guide, Third Edition by Tom White (O'Reilly
Media Inc., 2012, ISBN: 978-1449311520).

■ For documentation about Cloudera's Distribution including
Apache Hadoop, see the Cloudera library at

http://oracle.cloudera.com/

Apache Hive
Hive is an open-source data warehouse that supports data summarization, ad hoc
querying, and data analysis of data stored in HDFS. It uses a SQL-like language called
HiveQL. An interpreter generates MapReduce code from the HiveQL queries. By
storing data in Hive, you can avoid writing MapReduce programs in Java.

Hive is a component of CDH and is always installed on Oracle Big Data Appliance.
Oracle Big Data Connectors can access Hive tables.

Oracle NoSQL Database
Oracle NoSQL Database is a distributed key-value database built on the proven
storage technology of Berkeley DB Java Edition. Whereas HDFS stores unstructured
data in very large files, Oracle NoSQL Database indexes the data and supports

Organizing Big Data

1-6 Oracle Big Data Appliance Software User's Guide

transactions. But unlike Oracle Database, which stores highly structured data, Oracle
NoSQL Database has relaxed consistency rules, no schema structure, and only modest
support for joins, particularly across storage nodes.

NoSQL databases, or "Not Only SQL" databases, have developed over the past decade
specifically for storing big data. However, they vary widely in implementation. Oracle
NoSQL Database has these characteristics:

■ Uses a system-defined, consistent hash index for data distribution

■ Supports high availability through replication

■ Provides single-record, single-operation transactions with relaxed consistency
guarantees

■ Provides a Java API

Oracle NoSQL Database is designed to provide highly reliable, scalable, predictable,
and available data storage. The key-value pairs are stored in shards or partitions (that
is, subsets of data) based on a primary key. Data on each shard is replicated across
multiple storage nodes to ensure high availability. Oracle NoSQL Database supports
fast querying of the data, typically by key lookup.

An intelligent driver links the NoSQL database with client applications and provides
access to the requested key-value on the storage node with the lowest latency.

Oracle NoSQL Database includes hashing and balancing algorithms to ensure proper
data distribution and optimal load balancing, replication management components to
handle storage node failure and recovery, and an easy-to-use administrative interface
to monitor the state of the database.

Oracle NoSQL Database is typically used to store customer profiles and similar data
for identifying and analyzing big data. For example, you might log in to a website and
see advertisements based on your stored customer profile (a record in Oracle NoSQL
Database) and your recent activity on the site (web logs currently streaming into
HDFS).

Oracle NoSQL Database is an optional component of Oracle Big Data Appliance and
runs on a separate cluster from CDH.

See Also:

■ Oracle NoSQL Database Getting Started Guide at

http://docs.oracle.com/cd/NOSQL/html/index.html

■ Oracle Big Data Appliance Licensing Information

Organizing Big Data
Oracle Big Data Appliance provides several ways of organizing, transforming, and
reducing big data for analysis:

■ MapReduce

■ Oracle Big Data SQL

■ Oracle Big Data Connectors

■ Oracle R Support for Big Data

Organizing Big Data

Introducing Oracle Big Data Appliance 1-7

MapReduce
The MapReduce engine provides a platform for the massively parallel execution of
algorithms written in Java. MapReduce uses a parallel programming model for
processing data on a distributed system. It can process vast amounts of data quickly
and can scale linearly. It is particularly effective as a mechanism for batch processing
of unstructured and semistructured data. MapReduce abstracts lower-level operations
into computations over a set of keys and values.

Although big data is often described as unstructured, incoming data always has some
structure. However, it does not have a fixed, predefined structure when written to
HDFS. Instead, MapReduce creates the desired structure as it reads the data for a
particular job. The same data can have many different structures imposed by different
MapReduce jobs.

A simplified description of a MapReduce job is the successive alternation of two
phases: the Map phase and the Reduce phase. Each Map phase applies a transform
function over each record in the input data to produce a set of records expressed as
key-value pairs. The output from the Map phase is input to the Reduce phase. In the
Reduce phase, the Map output records are sorted into key-value sets, so that all
records in a set have the same key value. A reducer function is applied to all the
records in a set, and a set of output records is produced as key-value pairs. The Map
phase is logically run in parallel over each record, whereas the Reduce phase is run in
parallel over all key values.

Note: Oracle Big Data Appliance uses the Yet Another Resource
Negotiator (YARN) implementation of MapReduce.

Oracle Big Data SQL
Oracle Big Data SQL supports queries against vast amounts of big data stored in
multiple data sources, including Apache Hive, HDFS, Oracle NoSQL Database, and
Apache HBase. You can view and analyze data from various data stores together, as if
it were all stored in an Oracle database.

Using Oracle Big Data SQL, you can query data stored in a Hadoop cluster using the
complete SQL syntax. You can execute the most complex SQL SELECT statements
against data in Hadoop, either manually or using your existing applications, to tease
out the most significant insights.

Oracle Big Data SQL is licensed separately from Oracle Big Data Appliance.

See Also: Part III, "Oracle Big Data SQL"

Oracle Big Data Connectors
Oracle Big Data Connectors facilitate data access between data stored in CDH and
Oracle Database. The connectors are licensed separately from Oracle Big Data
Appliance and include:

■ Oracle SQL Connector for Hadoop Distributed File System

■ Oracle Loader for Hadoop

■ Oracle XQuery for Hadoop

■ Oracle R Advanced Analytics for Hadoop

■ Oracle Data Integrator

See Also: Oracle Big Data Connectors User's Guide

Organizing Big Data

1-8 Oracle Big Data Appliance Software User's Guide

Oracle SQL Connector for Hadoop Distributed File System
Oracle SQL Connector for Hadoop Distributed File System (Oracle SQL Connector for
HDFS) provides read access to HDFS from an Oracle database using external tables.

An external table is an Oracle Database object that identifies the location of data
outside of the database. Oracle Database accesses the data by using the metadata
provided when the external table was created. By querying the external tables, users
can access data stored in HDFS as if that data were stored in tables in the database.
External tables are often used to stage data to be transformed during a database load.

You can use Oracle SQL Connector for HDFS to:

■ Access data stored in HDFS files

■ Access Hive tables.

■ Access Data Pump files generated by Oracle Loader for Hadoop

■ Load data extracted and transformed by Oracle Data Integrator

Oracle Loader for Hadoop
Oracle Loader for Hadoop is an efficient and high-performance loader for fast
movement of data from a Hadoop cluster into a table in an Oracle database. It can read
and load data from a wide variety of formats. Oracle Loader for Hadoop partitions the
data and transforms it into a database-ready format in Hadoop. It optionally sorts
records by primary key before loading the data or creating output files. The load runs
as a MapReduce job on the Hadoop cluster.

Oracle Data Integrator
Oracle Data Integrator (ODI) extracts, transforms, and loads data into Oracle Database
from a wide range of sources.

In ODI, a knowledge module (KM) is a code template dedicated to a specific task in
the data integration process. You use Oracle Data Integrator Studio to load, select, and
configure the KMs for your particular application. More than 150 KMs are available to
help you acquire data from a wide range of third-party databases and other data
repositories. You only need to load a few KMs for any particular job.

Oracle Data Integrator contains the KMs specifically for use with big data.

Oracle XQuery for Hadoop
Oracle XQuery for Hadoop runs transformations expressed in the XQuery language by
translating them into a series of MapReduce jobs, which are executed in parallel on the
Hadoop cluster. The input data can be located in HDFS or Oracle NoSQL Database.
Oracle XQuery for Hadoop can write the transformation results to HDFS, Oracle
NoSQL Database, or Oracle Database.

Oracle R Advanced Analytics for Hadoop
Oracle R Advanced Analytics for Hadoop is a collection of R packages that provides:

■ Interfaces to work with Hive tables, Apache Hadoop compute infrastructure, local
R environment and database tables

■ Predictive analytic techniques written in R or Java as Hadoop MapReduce jobs
that can be applied to data in HDFS files

Analyzing and Visualizing Big Data

Introducing Oracle Big Data Appliance 1-9

Using simple R functions, you can copy data between R memory, the local file system,
HDFS, and Hive. You can write mappers and reducers in R, schedule these R
programs to execute as Hadoop MapReduce jobs, and return the results to any of those
locations.

Oracle R Support for Big Data
R is an open-source language and environment for statistical analysis and graphing It
provides linear and nonlinear modeling, standard statistical methods, time-series
analysis, classification, clustering, and graphical data displays. Thousands of
open-source packages are available in the Comprehensive R Archive Network (CRAN)
for a spectrum of applications, such as bioinformatics, spatial statistics, and financial
and marketing analysis. The popularity of R has increased as its functionality matured
to rival that of costly proprietary statistical packages.

Analysts typically use R on a PC, which limits the amount of data and the processing
power available for analysis. Oracle eliminates this restriction by extending the R
platform to directly leverage Oracle Big Data Appliance. Oracle R Distribution is
installed on all nodes of Oracle Big Data Appliance.

Oracle R Advanced Analytics for Hadoop provides R users with high-performance,
native access to HDFS and the MapReduce programming framework, which enables R
programs to run as MapReduce jobs on vast amounts of data. Oracle R Advanced
Analytics for Hadoop is included in the Oracle Big Data Connectors. See "Oracle R
Advanced Analytics for Hadoop" on page 1-8.

Oracle R Enterprise is a component of the Oracle Advanced Analytics option to
Oracle Database. It provides:

■ Transparent access to database data for data preparation and statistical analysis
from R

■ Execution of R scripts at the database server, accessible from both R and SQL

■ A wide range of predictive and data mining in-database algorithms

Oracle R Enterprise enables you to store the results of your analysis of big data in an
Oracle database, or accessed for display in dashboards and applications.

Both Oracle R Advanced Analytics for Hadoop and Oracle R Enterprise make Oracle
Database and the Hadoop computational infrastructure available to statistical users
without requiring them to learn the native programming languages of either one.

See Also:

■ For information about R, go to

http://www.r-project.org/

■ For information about Oracle R Enterprise, go to

http://docs.oracle.com/cd/E40980_01/welcome.html

Analyzing and Visualizing Big Data
After big data is transformed and loaded in Oracle Database, you can use the full
spectrum of Oracle business intelligence solutions and decision support products to
further analyze and visualize all your data.

See Also:

■ Oracle Business Intelligence website at

http://www.oracle.com/us/solutions/ent-performance-bi/bus
iness-intelligence/index.html

■ Data Warehousing and Business Intelligence in the Oracle
Database Documentation Library at

http://www.oracle.com/pls/db112/portal.portal_
db?selected=6&frame=

Analyzing and Visualizing Big Data

1-10 Oracle Big Data Appliance Software User's Guide

http://www.oracle.com/us/solutions/ent-performance-bi/business-intelligence/index.html
http://www.oracle.com/us/solutions/ent-performance-bi/business-intelligence/index.html
http://www.oracle.com/pls/db112/portal.portal_db?selected=6&frame=
http://www.oracle.com/pls/db112/portal.portal_db?selected=6&frame=

2

Administering Oracle Big Data Appliance 2-1

2Administering Oracle Big Data Appliance

This chapter provides information about the software and services installed on Oracle
Big Data Appliance. It contains these sections:

■ Monitoring Multiple Clusters Using Oracle Enterprise Manager

■ Managing Operations Using Cloudera Manager

■ Using Hadoop Monitoring Utilities

■ Using Cloudera Hue to Interact With Hadoop

■ About the Oracle Big Data Appliance Software

■ About the CDH Software Services

■ Effects of Hardware on Software Availability

■ Managing a Hardware Failure

■ Stopping and Starting Oracle Big Data Appliance

■ Managing Oracle Big Data SQL

■ Security on Oracle Big Data Appliance

■ Auditing Oracle Big Data Appliance

■ Collecting Diagnostic Information for Oracle Customer Support

Monitoring Multiple Clusters Using Oracle Enterprise Manager
An Oracle Enterprise Manager plug-in enables you to use the same system monitoring
tool for Oracle Big Data Appliance as you use for Oracle Exadata Database Machine or
any other Oracle Database installation. With the plug-in, you can view the status of the
installed software components in tabular or graphic presentations, and start and stop
these software services. You can also monitor the health of the network and the rack
components.

Oracle Enterprise Manager enables you to monitor all Oracle Big Data Appliance racks
on the same InfiniBand fabric. It provides summary views of both the rack hardware
and the software layout of the logical clusters.

Using the Enterprise Manager Web Interface
After opening Oracle Enterprise Manager web interface, logging in, and selecting a
target cluster, you can drill down into these primary areas:

■ InfiniBand network: Network topology and status for InfiniBand switches and
ports. See Figure 2–1.

Monitoring Multiple Clusters Using Oracle Enterprise Manager

2-2 Oracle Big Data Appliance Software User's Guide

■ Hadoop cluster: Software services for HDFS, MapReduce, and ZooKeeper.

■ Oracle Big Data Appliance rack: Hardware status including server hosts, Oracle
Integrated Lights Out Manager (Oracle ILOM) servers, power distribution units
(PDUs), and the Ethernet switch.

Figure 2–1 shows a small section of the cluster home page.

Figure 2–1 YARN Page in Oracle Enterprise Manager

To monitor Oracle Big Data Appliance using Oracle Enterprise Manager:

1. Download and install the plug-in. See Oracle Enterprise Manager System Monitoring
Plug-in Installation Guide for Oracle Big Data Appliance.

2. Log in to Oracle Enterprise Manager as a privileged user.

3. From the Targets menu, choose Big Data Appliance to view the Big Data page.
You can see the overall status of the targets already discovered by Oracle
Enterprise Manager.

4. Select a target cluster to view its detail pages.

5. Expand the target navigation tree to display the components. Information is
available at all levels.

6. Select a component in the tree to display its home page.

7. To change the display, choose an item from the drop-down menu at the top left of
the main display area.

See Also: Oracle Enterprise Manager System Monitoring Plug-in
Installation Guide for Oracle Big Data Appliance for installation
instructions and use cases.

Using the Enterprise Manager Command-Line Interface
The Enterprise Manager command-line interface (emcli) is installed on Oracle Big
Data Appliance along with all the other software. It provides the same functionality as
the web interface. You must provide credentials to connect to Oracle Management
Server.

To get help, enter emcli help.

See Also: Oracle Enterprise Manager Command Line Interface Guide

Managing Operations Using Cloudera Manager

Administering Oracle Big Data Appliance 2-3

Managing Operations Using Cloudera Manager
Cloudera Manager is installed on Oracle Big Data Appliance to help you with
Cloudera's Distribution including Apache Hadoop (CDH) operations. Cloudera
Manager provides a single administrative interface to all Oracle Big Data Appliance
servers configured as part of the Hadoop cluster.

Cloudera Manager simplifies the performance of these administrative tasks:

■ Monitor jobs and services

■ Start and stop services

■ Manage security and Kerberos credentials

■ Monitor user activity

■ Monitor the health of the system

■ Monitor performance metrics

■ Track hardware use (disk, CPU, and RAM)

Cloudera Manager runs on the ResourceManager node (node03) and is available on
port 7180.

To use Cloudera Manager:

1. Open a browser and enter a URL like the following:

http://bda1node03.example.com:7180

In this example, bda1 is the name of the appliance, node03 is the name of the
server, example.com is the domain, and 7180 is the default port number for
Cloudera Manager.

2. Log in with a user name and password for Cloudera Manager. Only a user with
administrative privileges can change the settings. Other Cloudera Manager users
can view the status of Oracle Big Data Appliance.

See Also: Cloudera Manager Monitoring and Diagnostics Guide at

http://www.cloudera.com/content/cloudera-content/cloudera-do
cs/CM5/latest/Cloudera-Manager-Diagnostics-Guide/Cloudera-Ma
nager-Diagnostics-Guide.html

or click Help on the Cloudera Manager Support menu

Monitoring the Status of Oracle Big Data Appliance
In Cloudera Manager, you can choose any of the following pages from the menu bar
across the top of the display:

■ Home: Provides a graphic overview of activities and links to all services controlled
by Cloudera Manager. See Figure 2–2.

■ Clusters: Accesses the services on multiple clusters.

■ Hosts: Monitors the health, disk usage, load, physical memory, swap space, and
other statistics for all servers in the cluster.

■ Diagnostics: Accesses events and logs. Cloudera Manager collects historical
information about the systems and services. You can search for a particular phrase

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM5/latest/Cloudera-Manager-Diagnostics-Guide/Cloudera-Manager-Diagnostics-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM5/latest/Cloudera-Manager-Diagnostics-Guide/Cloudera-Manager-Diagnostics-Guide.html

Managing Operations Using Cloudera Manager

2-4 Oracle Big Data Appliance Software User's Guide

for a selected server, service, and time period. You can also select the minimum
severity level of the logged messages included in the search: TRACE, DEBUG,
INFO, WARN, ERROR, or FATAL.

■ Audits: Displays the audit history log for a selected time range. You can filter the
results by user name, service, or other criteria, and download the log as a CSV file.

■ Charts: Enables you to view metrics from the Cloudera Manager time-series data
store in a variety of chart types, such as line and bar.

■ Backup: Accesses snapshot policies and scheduled replications.

■ Administration: Provides a variety of administrative options, including Settings,
Alerts, Users, and Kerberos.

Figure 2–2 shows the Cloudera Manager home page.

Figure 2–2 Cloudera Manager Home Page

Performing Administrative Tasks
As a Cloudera Manager administrator, you can change various properties for
monitoring the health and use of Oracle Big Data Appliance, add users, and set up
Kerberos security.

To access Cloudera Manager Administration:

1. Log in to Cloudera Manager with administrative privileges.

2. Click Administration, and select a task from the menu.

Managing CDH Services With Cloudera Manager
Cloudera Manager provides the interface for managing these services:

■ HDFS

■ Hive

■ Hue

Using Hadoop Monitoring Utilities

Administering Oracle Big Data Appliance 2-5

■ Oozie

■ YARN

■ ZooKeeper

You can use Cloudera Manager to change the configuration of these services, stop, and
restart them. Additional services are also available, which require configuration before
you can use them. See "Unconfigured Software" on page 2-9.

Note: Manual edits to Linux service scripts or Hadoop configuration
files do not affect these services. You must manage and configure
them using Cloudera Manager.

Using Hadoop Monitoring Utilities
You also have the option of using the native Hadoop utilities. These utilities are
read-only and do not require authentication.

Cloudera Manager provides an easy way to obtain the correct URLs for these utilities.
On the YARN service page, expand the Web UI submenu.

Monitoring MapReduce Jobs
You can monitor MapReduce jobs using the resource manager interface.

To monitor MapReduce jobs:

■ Open a browser and enter a URL like the following:

http://bda1node03.example.com:8088

In this example, bda1 is the name of the rack, node03 is the name of the server
where the YARN resource manager runs, and 8088 is the default port number for
the user interface.

Figure 2–3 shows the resource manager interface.

Figure 2–3 YARN Resource Manager Interface

Using Cloudera Hue to Interact With Hadoop

2-6 Oracle Big Data Appliance Software User's Guide

Monitoring the Health of HDFS
You can monitor the health of the Hadoop file system by using the DFS health utility
on the first two nodes of a cluster.

To monitor HDFS:

■ Open a browser and enter a URL like the following:

http://bda1node01.example.com:50070

In this example, bda1 is the name of the rack, node01 is the name of the server
where the dfshealth utility runs, and 50070 is the default port number for the user
interface.

Figure 2–3 shows the DFS health utility interface.

Figure 2–4 DFS Health Utility

Using Cloudera Hue to Interact With Hadoop
Hue runs in a browser and provides an easy-to-use interface to several applications to
support interaction with Hadoop and HDFS. You can use Hue to perform any of the
following tasks:

■ Query Hive data stores

■ Create, load, and delete Hive tables

■ Work with HDFS files and directories

■ Create, submit, and monitor MapReduce jobs

■ Monitor MapReduce jobs

■ Create, edit, and submit workflows using the Oozie dashboard

■ Manage users and groups

About the Oracle Big Data Appliance Software

Administering Oracle Big Data Appliance 2-7

Hue is automatically installed and configured on Oracle Big Data Appliance. It runs
on port 8888 of the ResourceManager node (node03).

To use Hue:

1. Log in to Cloudera Manager and click the hue service on the Home page.

2. On the hue page under Quick Links, click Hue Web UI.

3. Bookmark the Hue URL, so that you can open Hue directly in your browser. The
following URL is an example:

http://bda1node03.example.com:8888

4. Log in with your Hue credentials.

Oracle Big Data Appliance is not configured initially with any Hue user accounts.
The first user who connects to Hue can log in with any user name and password,
and automatically becomes an administrator. This user can create other user and
administrator accounts.

Figure 2–5 shows the Hive Query Editor.

Figure 2–5 Hive Query Editor

See Also: Hue User Guide at

http://archive-primary.cloudera.com/cdh5/cdh/5/hue/user-guid
e/

About the Oracle Big Data Appliance Software
The following sections identify the software installed on Oracle Big Data Appliance.
Some components operate with Oracle Database 11.2.0.2 and later releases.

This section contains the following topics:

■ Software Components

■ Unconfigured Software

http://archive-primary.cloudera.com/cdh5/cdh/5/hue/user-guide/
http://archive-primary.cloudera.com/cdh5/cdh/5/hue/user-guide/

About the Oracle Big Data Appliance Software

2-8 Oracle Big Data Appliance Software User's Guide

■ Allocating Resources Among Services

Software Components
These software components are installed on all servers in the cluster. Oracle Linux,
required drivers, firmware, and hardware verification utilities are factory installed. All
other software is installed on site. The optional software components may not be
configured in your installation.

Note: You do not need to install additional software on Oracle Big
Data Appliance. Doing so may result in a loss of warranty and
support. See the Oracle Big Data Appliance Owner's Guide.

Base image software:

■ Oracle Linux 6.5 (upgrades stay at 5.8) with Oracle Unbreakable Enterprise Kernel
version 2 (UEK2)

■ Java HotSpot Virtual Machine 7 version 72 (JDK 7u72)

■ Oracle R Distribution 3.1.1-2

■ MySQL Database 5.5.35 Advanced Edition

■ Puppet, firmware, Oracle Big Data Appliance utilities

■ Oracle InfiniBand software

Mammoth installation:

■ Cloudera's Distribution including Apache Hadoop Release 5 (5.3.0) including:

– Apache Hive

– Apache HBase

– Apache Sentry

– Apache Spark

– Cloudera Impala

– Cloudera Search

■ Cloudera Manager Release 5 (5.3.0) including Cloudera Navigator

■ Oracle Database Instant Client 12.1

■ Oracle Big Data SQL (optional)

■ Oracle NoSQL Database Community Edition or Enterprise Edition 12c Release 1
Version 3.2.4 (optional)

■ Oracle Big Data Connectors 4.1 (optional):

– Oracle SQL Connector for Hadoop Distributed File System (HDFS)

– Oracle Loader for Hadoop

– Oracle Data Integrator Agent 12.1.3.0

– Oracle XQuery for Hadoop

– Oracle R Advanced Analytics for Hadoop

See Also: Oracle Big Data Appliance Owner's Guide for information
about the Mammoth utility

About the Oracle Big Data Appliance Software

Administering Oracle Big Data Appliance 2-9

Figure 2–6 shows the relationships among the major components.

Figure 2–6 Major Software Components of Oracle Big Data Appliance

Oracle Big Data Appliance

Oracle
NoSQL
Database

Oracle Big Data Connectors:
Oracle SQL Connector for HDFS
Oracle Loader for Hadoop
Oracle Data Integrator
Oracle XQuery for Hadoop
Oracle R Advanced Analytics for Hadoop

Cloudera’s Distribution Including Apache Hadoop

Oracle Linux and
Oracle Java Hotspot Virtual Machine

Unconfigured Software
Your Oracle Big Data Appliance license includes all components in Cloudera
Enterprise Data Hub Edition. All CDH components are installed automatically by the
Mammoth utility. Do not download them from the Cloudera website.

However, you must use Cloudera Manager to add some services before you can use
them, such as the following:

■ Apache Flume

■ Apache HBase

■ Apache Spark

■ Apache Sqoop

■ Cloudera Impala

■ Cloudera Navigator

■ Cloudera Search

To add a service:

1. Log in to Cloudera Manager as the admin user.

2. On the Home page, expand the cluster menu in the left panel and choose Add a
Service to open the Add Service wizard. The first page lists the services you can
add.

3. Follow the steps of the wizard.

See Also:

■ For a complete list of CDH components:

http://www.cloudera.com/content/cloudera/en/products-and-
services/product-comparison.html

■ CDH5 Installation and Configuration Guide for configuration
procedures at

http://www.cloudera.com/content/cloudera-content/cloudera
-docs/CDH5/latest/CDH5-Installation-Guide/CDH5-Installati
on-Guide.html

About the CDH Software Services

2-10 Oracle Big Data Appliance Software User's Guide

Allocating Resources Among Services
You can allocate resources to each service—HDFS, YARN, Oracle Big Data SQL, Hive,
and so forth—as a percentage of the total resource pool. Cloudera Manager
automatically calculates the recommended resource management settings based on
these percentages. The static service pools isolate services on the cluster, so that a high
load on one service as a limited impact on the other services.

To allocate resources among services:

1. Log in as admin to Cloudera Manager.

2. Open the Clusters menu at the top of the page, then select Static Service Pools
under Resource Management.

3. Select Configuration.

4. Follow the steps of the wizard, or click Change Settings Directly to edit the
current settings.

About the CDH Software Services
All services are installed on all nodes in a CDH cluster, but individual services run
only on designated nodes. There are slight variations in the location of the services
depending on the configuration of the cluster.

This section describes the services in a default YARN configuration.

This section contains the following topics:

■ Where Do the Services Run on a Single-Rack CDH Cluster?

■ Where Do the Services Run on a Multirack CDH Cluster?

■ About MapReduce

■ Automatic Failover of the NameNode

■ Automatic Failover of the ResourceManager

Where Do the Services Run on a Single-Rack CDH Cluster?
Table 2–1 identifies the services in CDH clusters configured within a single rack,
including starter racks and clusters with six nodes. Node01 is the first server in the
cluster (server 1, 7, or 10), and nodenn is the last server in the cluster (server 6, 9, 12, or
18).

http://www.cloudera.com/content/cloudera/en/products-and-services/product-comparison.html
http://www.cloudera.com/content/cloudera/en/products-and-services/product-comparison.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Installation-Guide/CDH5-Installation-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Installation-Guide/CDH5-Installation-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Installation-Guide/CDH5-Installation-Guide.html

Table 2–1 Service Locations for One or More CDH Clusters in a Single Rack

Node01 Node02 Node03 Node04 Node05 to nn

Balancer Cloudera Manager
Server

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera
Manager Agent

DataNode DataNode DataNode DataNode DataNode

Failover Controller Failover Controller JobHistory Hive, Hue, Oozie, Solr

JournalNode JournalNode JournalNode

MySQL Backup MySQL Primary

NameNode NameNode

NodeManager1

1 Starter racks and six-node clusters only, with reduced allocated resources

NodeManager1 NodeManager NodeManager NodeManager

Oracle Data Integrator
Agent

Puppet Puppet Puppet Puppet Puppet

Puppet Master ResourceManager ResourceManager

ZooKeeper ZooKeeper ZooKeeper

About the CDH Software Services

Administering Oracle Big Data Appliance 2-11

Where Do the Services Run on a Multirack CDH Cluster?
When multiple racks are configured as a single CDH cluster, some critical services are
installed on the second rack. The second rack must have at least two nodes.

Table 2–2 identifies the location of services on the first rack of a multirack cluster.

Table 2–2 Service Locations in the First Rack of a Multirack CDH Cluster

Node01 Node02 Node03 Node04 Node05 to nn1

1 nn includes the servers in additional racks.

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Server

DataNode DataNode DataNode DataNode DataNode

Failover Controller

JournalNode JournalNode

NameNode MySQL Primary

NodeManager NodeManager NodeManager NodeManager NodeManager

Puppet Puppet Puppet Puppet Puppet

Puppet Master ResourceManager

ZooKeeper ZooKeeper

Table 2–3 shows the service locations in the second rack of a multirack cluster.

Table 2–3 Service Locations in the Second Rack of a Multirack CDH Cluster

Node01 Node02 Node03 Node04 Node05 to nn

Balancer

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera Manager
Agent

Cloudera
Manager Agent

DataNode DataNode DataNode DataNode DataNode

Failover Controller

JournalNode Hive, Hue, Oozie, Solr

MySQL Backup

NameNode

NodeManager1

1 Starter racks and six-node clusters only, with reduced allocated resources

NodeManager1 NodeManager NodeManager NodeManager

Oracle Data Integrator
Agent

Puppet Puppet Puppet Puppet Puppet

Puppet Master ResourceManager

ZooKeeper

Note: When expanding a cluster from one to two racks, Mammoth
moves all critical services from nodes 2 and 4 of the first rack to nodes
1 and 2 of the second rack. Node 2 of the first rack becomes a
noncritical node.

About the CDH Software Services

2-12 Oracle Big Data Appliance Software User's Guide

About MapReduce
Yet Another Resource Negotiator (YARN) is the version of MapReduce that runs on
Oracle Big Data Appliance, beginning with version 3.0. MapReduce applications
developed using MapReduce 1 (MRv1) may require recompilation to run under
YARN.

The ResourceManager performs all resource management tasks. An MRAppMaster
performs the job management tasks. Each job has its own MRAppMaster. The
NodeManager has containers that can run a map task, a reduce task, or an
MRAppMaster. The NodeManager can dynamically allocate containers using the
available memory. This architecture results in improved scalability and better use of
the cluster than MRv1.

YARN also manages resources for Spark and Impala.

See Also: "Running Existing Applications on Hadoop 2 YARN" at

http://hortonworks.com/blog/running-existing-applications-on
-hadoop-2-yarn/

Automatic Failover of the NameNode
The NameNode is the most critical process because it keeps track of the location of all
data. Without a healthy NameNode, the entire cluster fails. Apache Hadoop v0.20.2
and earlier are vulnerable to failure because they have a single name node.

About the CDH Software Services

Administering Oracle Big Data Appliance 2-13

Cloudera's Distribution including Apache Hadoop Version 4 (CDH5) reduces this
vulnerability by maintaining redundant NameNodes. The data is replicated during
normal operation as follows:

■ CDH maintains redundant NameNodes on the first two nodes of a cluster. One of
the NameNodes is in active mode, and the other NameNode is in hot standby
mode. If the active NameNode fails, then the role of active NameNode
automatically fails over to the standby NameNode.

■ The NameNode data is written to a mirrored partition so that the loss of a single
disk can be tolerated. This mirroring is done at the factory as part of the operating
system installation.

■ The active NameNode records all changes to the file system metadata in at least
two JournalNode processes, which the standby NameNode reads. There are three
JournalNodes, which run on the first three nodes of each cluster.

■ The changes recorded in the journals are periodically consolidated into a single
fsimage file in a process called checkpointing.

On Oracle Big Data Appliance, the default log level of the NameNode is DEBUG, to
support the Oracle Audit Vault and Database Firewall plugin. If this option is not
configured, then you can reset the log level to INFO.

Note: Oracle Big Data Appliance 2.0 and later releases do not
support the use of an external NFS filer for backups and do not use
NameNode federation.

Figure 2–7 shows the relationships among the processes that support automatic
failover of the NameNode.

Figure 2–7 Automatic Failover of the NameNode on Oracle Big Data Appliance

Failover
Controller
Server 1

DataNode

DataNode

DataNode

JournalNode
edits

NameNode
(active mode)

Server 1

NameNode
(hot standby mode)

Server 2

Failover
Controller
Server 2

Checkpointing

JournalNode
edits

JournalNode
edits

ZooKeeper

Automatic Failover of the ResourceManager
The ResourceManager allocates resources for application tasks and application
masters across the cluster. Like the NameNode, the ResourceManager is a critical point
of failure for the cluster. If all ResourceManagers fail, then all jobs stop running. Oracle
Big Data Appliance 3.0 supports ResourceManager High Availability in Cloudera 5 to
reduce this vulnerability.

About the CDH Software Services

2-14 Oracle Big Data Appliance Software User's Guide

CDH maintains redundant ResourceManager services on node03 and node04. One of
the services is in active mode, and the other service is in hot standby mode. If the
active service fails, then the role of active ResourceManager automatically fails over to
the standby service. No failover controllers are required.

Figure 2–7 shows the relationships among the processes that support automatic
failover of the ResourceManager.

Figure 2–8 Automatic Failover of the ResourceManager on Oracle Big Data Appliance

NodeManager

NodeManager

NodeManager

ResourceManager
Server 3

ResourceManager
Server 4

ZooKeeper

Map and Reduce Resource Configuration
The NodeManager services are allocated a fixed amount of memory and virtual core
(Vcore), as shown in Table 2–4.

Table 2–4 Resource Allocation for NodeManagers

Appliance Model Memory VCore

Oracle Big Data Appliance X4-2 40 GB 32

Oracle Big Data Appliance X3-2 40 GB 32

Oracle Big Data Appliance (Sun Fire X4270 M2-based rack) 30 GB 24

Each node in a cluster has a maximum number of map and reduce tasks that are
allowed to run simultaneously. Table 2–5 shows the default configuration of resources
for the MapReduce service on Oracle Big Data Appliance X4-2 and X3-2.

Table 2–5 Maximum Map and Reduce Tasks on Oracle Big Data Appliance X3-2

Node 6-Node Cluster Larger Clusters1

1 9 or more nodes

Node01 and Node02 14 map

8 reduce

None (no NodeManager)

Node03 and Node04 10 map

6 reduce

10 map

6 reduce

Node05 to Nodenn 20 map

13 reduce

20 map

13 reduce

Table 2–6 shows the default configuration of resources for the MapReduce service on
Oracle Big Data Appliance Sun Fire X4270 M2-based racks.

Table 2–6 Maximum Map and Reduce Tasks on Sun Fire X4270 M2-Based Racks

Node 6-Node Cluster Larger Clusters1

1 9 or more nodes

Node01 and Node02 10 map

6 reduce

None

Node03 and Node04 7 map

4 reduce

7 map

4 reduce

Node05 to Nodenn 15 map

10 reduce

15 map

10 reduce

Effects of Hardware on Software Availability

Administering Oracle Big Data Appliance 2-15

Effects of Hardware on Software Availability
The effects of a server failure vary depending on the server's function within the CDH
cluster. Oracle Big Data Appliance servers are more robust than commodity hardware,
so you should experience fewer hardware failures. This section highlights the most
important services that run on the various servers of the primary rack. For a full list,
see "Where Do the Services Run on a Single-Rack CDH Cluster?" on page 2-10.

Note: In a multirack cluster, some critical services run on the first
server of the second rack. See "Where Do the Services Run on a
Multirack CDH Cluster?" on page 2-11.

Logical Disk Layout
Each server has 12 disks. The critical operating system is stored on disks 1 and 2.

Table 2–7 describes how the disks are partitioned.

Table 2–7 Logical Disk Layout

Disk Description

1 to 2 150 gigabytes (GB) physical and logical partition, mirrored to create two copies,
with the Linux operating system, all installed software, NameNode data, and
MySQL Database data. The NameNode and MySQL Database data are
replicated on two servers for a total of four copies.

2.8 terabytes (TB) HDFS data partition

3 to 12 Single HDFS or Oracle NoSQL Database data partition

Critical and Noncritical CDH Nodes
Critical nodes are required for the cluster to operate normally and provide all services
to users. In contrast, the cluster continues to operate with no loss of service when a
noncritical node fails.

On single-rack clusters, the critical services are installed initially on the first four nodes
of the cluster. The remaining nodes (node05 up to node18) only run noncritical
services. If a hardware failure occurs on one of the critical nodes, then the services can
be moved to another, noncritical server. For example, if node02 fails, then you might
move its critical services node05. Table 2–1 identifies the initial location of services for
clusters that are configured on a single rack.

In a multirack cluster, some critical services run on the first server of the second rack.
See "Where Do the Services Run on a Single-Rack CDH Cluster?" on page 2-10.

Effects of Hardware on Software Availability

2-16 Oracle Big Data Appliance Software User's Guide

High Availability or Single Points of Failure?
Some services have high availability and automatic failover. Other services have a
single point of failure. The following list summarizes the critical services:

■ NameNodes: High availability with automatic failover

■ ResourceManagers: High availability with automatic failover

■ MySQL Database: Primary and backup databases are configured with replication
of the primary database to the backup database. There is no automatic failover. If
the primary database fails, the functionality of the cluster is diminished, but no
data is lost.

■ Cloudera Manager: The Cloudera Manager server runs on one node. If it fails,
then Cloudera Manager functionality is unavailable.

■ Oozie server, Hive server, Hue server, and Oracle Data Integrator agent: These
services have no redundancy. If the node fails, then the services are unavailable.

Where Do the Critical Services Run?
Table 2–8 identifies where the critical services run in a CDH cluster. These four nodes
are described in more detail in the topics that follow.

Table 2–8 Critical Service Locations on a Single Rack

Node Name Critical Functions

First NameNode Balancer, Failover Controller, JournalNode, NameNode, Puppet
Master, ZooKeeper

Second NameNode Failover Controller, JournalNode, MySQL Backup Database,
NameNode, ZooKeeper

First ResourceManager Node Cloudera Manager Server, JobHistory, JournalNode, MySQL
Primary Database, ResourceManager, ZooKeeper

Second ResourceManager
Node

Hive, Hue, Oozie, Solr, Oracle Data Integrator Agent,
ResourceManager

In a single-rack cluster, the four critical nodes are created initially on the first four
nodes. See "Where Do the Services Run on a Single-Rack CDH Cluster?" on page 2-10

In a multirack cluster, the Second NameNode and the Second ResourceManager nodes
are moved to the first two nodes of the second rack. See "Where Do the Services Run
on a Multirack CDH Cluster?" on page 2-11.

First NameNode Node
If the first NameNode fails or goes offline (such as a restart), then the second
NameNode automatically takes over to maintain the normal activities of the cluster.

Alternatively, if the second NameNode is already active, it continues without a
backup. With only one NameNode, the cluster is vulnerable to failure. The cluster has
lost the redundancy needed for automatic failover.

The puppet master also runs on this node. The Mammoth utility uses Puppet, and so
you cannot install or reinstall the software if, for example, you must replace a disk
drive elsewhere in the rack.

Effects of Hardware on Software Availability

Administering Oracle Big Data Appliance 2-17

Second NameNode Node
If the second NameNode fails, then the function of the NameNode either fails over to
the first NameNode (node01) or continues there without a backup. However, the
cluster has lost the redundancy needed for automatic failover if the first NameNode
also fails.

The MySQL backup database also runs on this node. MySQL Database continues to
run, although there is no backup of the master database.

First ResourceManager Node
If the first ResourceManager node fails or goes offline (such as a restart), then the
second ResourceManager automatically takes over to distribute MapReduce tasks to
specific nodes across the cluster.

Alternatively, if the second ResourceManager is already active, it continues without a
backup. With only one ResourceManager, the cluster is vulnerable to failure. The
cluster has lost the redundancy needed for automatic failover.

These services are also disrupted:

■ Cloudera Manager: This tool provides central management for the entire CDH
cluster. Without this tool, you can still monitor activities using the utilities
described in "Using Hadoop Monitoring Utilities" on page 2-5.

■ MySQL Database: Cloudera Manager, Oracle Data Integrator, Hive, and Oozie
use MySQL Database. The data is replicated automatically, but you cannot access
it when the master database server is down.

Second ResourceManager Node
If the second ResourceManager node fails, then the function of the ResourceManager
either fails over to the first ResourceManager or continues there without a backup.
However, the cluster has lost the redundancy needed for automatic failover if the first
ResourceManager also fails.

These services are also disrupted:

■ Oracle Data Integrator Agent This service supports Oracle Data Integrator, which
is one of the Oracle Big Data Connectors. You cannot use Oracle Data Integrator
when the ResourceManager node is down.

■ Hive: Hive provides a SQL-like interface to data that is stored in HDFS. Oracle Big
Data SQL and most of the Oracle Big Data Connectors can access Hive tables,
which are not available if this node fails.

■ Hue: This administrative tool is not available when the ResourceManager node is
down.

■ Oozie: This workflow and coordination service runs on the ResourceManager
node, and is unavailable when the node is down.

Noncritical CDH Nodes
The noncritical nodes are optional in that Oracle Big Data Appliance continues to
operate with no loss of service if a failure occurs. The NameNode automatically
replicates the lost data to always maintain three copies. MapReduce jobs execute on
copies of the data stored elsewhere in the cluster. The only loss is in computational
power, because there are fewer servers on which to distribute the work.

Managing a Hardware Failure

2-18 Oracle Big Data Appliance Software User's Guide

Managing a Hardware Failure
If a server starts failing, you must take steps to maintain the services of the cluster
with as little interruption as possible. You can manage a failing server easily using the
bdacli utility, as described in the following procedures. One of the management steps
is called decommissioning. Decommissioning stops all roles for all services, thereby
preventing data loss. Cloudera Manager requires that you decommission a CDH node
before retiring it.

When a noncritical node fails, there is no loss of service. However, when a critical node
fails in a CDH cluster, services with a single point of failure are unavailable, as
described in "Effects of Hardware on Software Availability" on page 2-15. You must
decide between these alternatives:

■ Wait for repairs to be made, and endure the loss of service until they are complete.

■ Move the critical services to another node. This choice may require that some
clients are reconfigured with the address of the new node. For example, if the
second ResourceManager node (typically node03) fails, then users must redirect
their browsers to the new node to access Cloudera Manager.

You must weigh the loss of services against the inconvenience of reconfiguring the
clients.

About Oracle NoSQL Database Clusters
Oracle NoSQL Database clusters do not have critical nodes. The storage nodes are
replicated, and users can choose from three administrative processes on different
nodes. There is no loss of services.

If the node hosting Mammoth fails (the first node of the cluster), then follow the
procedure for reinstalling it in "Prerequisites for Managing a Failing Node" on
page 2-18

To repair or replace any failing NoSQL node, follow the procedure in "Managing a
Failing Noncritical Node" on page 2-19.

Prerequisites for Managing a Failing Node
Ensure that you do the following before managing a failing or failed server, whether it
is configured as a CDH node or an Oracle NoSQL Database node:

■ Try restarting the services or rebooting the server.

■ Determine whether the failing node is critical or noncritical.

■ If the failing node is where Mammoth is installed:

1. For a CDH node, select a noncritical node in the same cluster as the failing
node.

For a NoSQL node, repair or replace the failed server first, and use it for these
steps.

2. Upload the Mammoth bundle to that node and unzip it.

3. Extract all files from BDAMammoth-version.run, using a command like the
following:

./BDAMammoth-ol6-4.0.0.run

Afterward, you must run all Mammoth operations from this node.

Managing a Hardware Failure

Administering Oracle Big Data Appliance 2-19

See Oracle Big Data Appliance Owner's Guide for information about the
Mammoth utility.

4. Follow the appropriate procedure in this section for managing a failing node.

Mammoth is installed on the first node of the cluster, unless its services were
migrated previously.

Managing a Failing CDH Critical Node
Only CDH clusters have critical nodes.

To manage a failing critical node:

1. Log in as root to the node where Mammoth is installed.

2. Migrate the services to a noncritical node. Replace node_name with the name of the
failing node, such as bda1node02.

bdacli admin_cluster migrate node_name

When the command finishes, node_name is decommissioned and its services are
running on a previously noncritical node.

3. Announce the change to the user community, so that they can redirect their clients
to the new critical node as required.

4. Repair or replace the failed server.

5. From the Mammoth node as root, reprovision the repaired or replaced server as a
noncritical node. Use the same name as the migrated node for node_name, such as
bda1node02:

bdacli admin_cluster reprovision node_name

6. If the failed node supported services like HBase or Impala, which Mammoth
installs but does not configure, then use Cloudera Manager to reconfigure them on
the new node.

Managing a Failing Noncritical Node
Use the following procedure to replace a failing node in either a CDH or a NoSQL
cluster.

To manage a failing noncritical node:

1. Log in as root to the node where Mammoth is installed (typically node01).

2. Decommission the failing node.Replace node_name with the name of the failing
node, such as bda1node07.

bdacli admin_cluster decommission node_name

3. Repair or replace the failed server.

4. From the Mammoth node as root, recommission the repaired or replaced server.
Use the same name as the decommissioned node for node_name, such as
bda1node07:

bdacli admin_cluster recommission node_name

See Also: Oracle Big Data Appliance Owner's Guide for the complete
bdacli syntax

Stopping and Starting Oracle Big Data Appliance

2-20 Oracle Big Data Appliance Software User's Guide

Stopping and Starting Oracle Big Data Appliance
This section describes how to shut down Oracle Big Data Appliance gracefully and
restart it.

■ Prerequisites

■ Stopping Oracle Big Data Appliance

■ Starting Oracle Big Data Appliance

Prerequisites
You must have root access. Passwordless SSH must be set up on the cluster, so that
you can use the dcli utility.

To ensure that passwordless-ssh is set up:

1. Log in to the first node of the cluster as root.

2. Use a dcli command to verify it is working. This command should return the IP
address and host name of every node in the cluster:

dcli -C hostname
192.0.2.1: bda1node01.example.com
192.0.2.2: bda1node02.example.com
 .
 .
 .

3. If you do not get these results, then set up dcli on the cluster:

setup-root-ssh -C

See Also: Oracle Big Data Appliance Owner's Guide for details about
these commands.

Stopping Oracle Big Data Appliance
Follow these procedures to shut down all Oracle Big Data Appliance software and
hardware components.

Note: The following services stop automatically when the system
shuts down. You do not need to take any action:

■ Oracle Enterprise Manager agent

■ Auto Service Request agents

Task 1 Stopping All Managed Services
Use Cloudera Manager to stop the services it manages, including flume, hbase, hdfs,
hive, hue, mapreduce, oozie, and zookeeper.

1. Log in to Cloudera Manager as the admin user.

See "Managing Operations Using Cloudera Manager" on page 2-3.

2. In the Status pane of the opening page, expand the menu for the cluster and click
Stop, and then click Stop again when prompted to confirm. See Figure 2–9.

To navigate to this page, click the Home tab, and then the Status subtab.

3. On the Command Details page, click Close when all processes are stopped.

Stopping and Starting Oracle Big Data Appliance

Administering Oracle Big Data Appliance 2-21

4. In the same pane under Cloudera Management Services, expand the menu for the
mgmt service and click Stop.

5. Log out of Cloudera Manager.

Figure 2–9 Stopping HDFS Services

Task 2 Stopping Cloudera Manager Server
Follow this procedure to stop Cloudera Manager Server.

1. Log in as root to the node where Cloudera Manager runs (initially node03).

Note: The remaining tasks presume that you are logged in to a
server as root. You can enter the commands from any server by using
the dcli command. This example runs the pwd command on node03
from any node in the cluster:

dcli -c node03 pwd

2. Stop the Cloudera Manager server:

service cloudera-scm-server stop
Stopping cloudera-scm-server: [OK]

3. Verify that the server is stopped:

service cloudera-scm-server status
cloudera-scm-server is stopped

After stopping Cloudera Manager, you cannot access it using the web console.

Task 3 Stopping Oracle Data Integrator Agent
If Oracle Data Integrator is used on the cluster:

1. Check the status of the Oracle Data Integrator agent:

dcli -C service odi-agent status

2. Stop the Oracle Data Integrator agent, if it is running:

dcli -C service odi-agent stop

3. Ensure that the Oracle Data Integrator agent stopped running:

dcli -C service odi-agent status

Stopping and Starting Oracle Big Data Appliance

2-22 Oracle Big Data Appliance Software User's Guide

Task 4 Dismounting NFS Directories
All nodes share an NFS directory on node03, and additional directories may also exist.
If a server with the NFS directory (/opt/exportdir) is unavailable, then the other
servers hang when attempting to shut down. Thus, you must dismount the NFS
directories first.

1. Locate any mounted NFS directories:

dcli -C mount | grep shareddir
192.0.2.1: bda1node03.example.com:/opt/exportdir on /opt/shareddir type nfs
(rw,tcp,soft,intr,timeo=10,retrans=10,addr=192.0.2.3)
192.0.2.2: bda1node03.example.com:/opt/exportdir on /opt/shareddir type nfs
(rw,tcp,soft,intr,timeo=10,retrans=10,addr=192.0.2.3)
192.0.2.3: /opt/exportdir on /opt/shareddir type none (rw,bind)
 .
 .
 .

The sample output shows a shared directory on node03 (192.0.2.3).

2. Dismount the shared directory:

dcli -C umount /opt/shareddir

3. Dismount any custom NFS directories.

Task 5 Stopping the Servers
The Linux shutdown -h command powers down individual servers. You can use the
dcli -g command to stop multiple servers.

1. Create a file that lists the names or IP addresses of the other servers in the cluster,
that is, not including the one you are logged in to.

2. Stop the other servers:

dcli -g filename shutdown -h now

For filename, enter the name of the file that you created in step 1.

3. Stop the server you are logged in to:

shutdown -h now

Task 6 Stopping the InfiniBand and Cisco Switches
To stop the network switches, turn off a PDU or a breaker in the data center. The
switches only turn off when power is removed.

The network switches do not have power buttons. They shut down only when power
is removed

To stop the switches, turn off all breakers in the two PDUs.

Starting Oracle Big Data Appliance
Follow these procedures to power up the hardware and start all services on Oracle Big
Data Appliance.

Task 1 Powering Up Oracle Big Data Appliance
1. Switch on all 12 breakers on both PDUs.

Stopping and Starting Oracle Big Data Appliance

Administering Oracle Big Data Appliance 2-23

2. Allow 4 to 5 minutes for Oracle ILOM and the Linux operating system to start on
the servers.

3. If password-based, on-disk encryption is enabled, then log in and mount the
Hadoop directories on those servers:

$ mount-hadoop-dirs
Enter password to mount Hadoop directories: password

If the servers do not start automatically, then you can start them locally by pressing the
power button on the front of the servers, or remotely by using Oracle ILOM. Oracle
ILOM has several interfaces, including a command-line interface (CLI) and a web
console. Use whichever interface you prefer.

For example, you can log in to the web interface as root and start the server from the
Remote Power Control page. The URL for Oracle ILOM is the same as for the host,
except that it typically has a -c or -ilom extension. This URL connects to Oracle ILOM
for bda1node4:

http://bda1node04-ilom.example.com

Task 2 Starting the HDFS Software Services
Use Cloudera Manager to start all the HDFS services that it controls.

1. Log in as root to the node where Cloudera Manager runs (initially node03).

Note: The remaining tasks presume that you are logged in to a
server as root. You can enter the commands from any server by using
the dcli command. This example runs the pwd command on node03
from any node in the cluster:

dcli -c node03 pwd

2. Verify that the Cloudera Manager started automatically on node03:

service cloudera-scm-server status
cloudera-scm-server (pid 11399) is running...

3. If it is not running, then start it:

service cloudera-scm-server start

4. Log in to Cloudera Manager as the admin user.

See "Managing Operations Using Cloudera Manager" on page 2-3.

5. In the Status pane of the opening page, expand the menu for the cluster and click
Start, and then click Start again when prompted to confirm. See Figure 2–9.

To navigate to this page, click the Home tab, and then the Status subtab.

6. On the Command Details page, click Close when all processes are started.

7. In the same pane under Cloudera Management Services, expand the menu for the
mgmt service and click Start.

8. Log out of Cloudera Manager (optional).

Task 3 Starting Oracle Data Integrator Agent
If Oracle Data Integrator is used on this cluster:

1. Check the status of the agent:

Managing Oracle Big Data SQL

2-24 Oracle Big Data Appliance Software User's Guide

/opt/oracle/odiagent/agent_standalone/oracledi/agent/bin/startcmd.sh
OdiPingAgent [-AGENT_NAME=agent_name]

2. Start the agent:

/opt/oracle/odiagent/agent_standalone/oracledi/agent/bin/agent.sh
[-NAME=agent_name] [-PORT=port_number]

Managing Oracle Big Data SQL
Oracle Big Data SQL is registered with Cloudera Manager as an add-on service. You
can use Cloudera Manager to start, stop, and restart the Oracle Big Data SQL service or
individual role instances, the same way as a CDH service.

Cloudera Manager also monitors the health of the Oracle Big Data SQL service, reports
service outages, and sends alerts if the service is not healthy.

Adding and Removing the Oracle Big Data SQL Service
Oracle Big Data SQL is an optional service on Oracle Big Data Appliance. It may be
installed with the other client software during the initial software installation or an
upgrade. Use Cloudera Manager to determine whether it is installed. A separate
license is required; Oracle Big Data SQL is not included with the Oracle Big Data
Appliance license.

You cannot use Cloudera Manager to add or remove the Oracle Big Data SQL service
from a CDH cluster on Oracle Big Data Appliance. Instead, log in to the server where
Mammoth is installed (usually the first node of the cluster) and use the following
commands in the bdacli utility:

■ To enable Oracle Big Data SQL

bdacli enable big_data_sql

■ To disable Oracle Big Data SQL:

bdacli disable big_data_sql

See Also: Oracle Big Data Appliance Owner's Guide

Allocating Resources to Oracle Big Data SQL
You can modify the property values in a Linux kernel Control Group (Cgroup) to
reserve resources for Oracle Big Data SQL.

To modify the resource management configuration settings:

1. Log in as admin to Cloudera Manager.

2. On the Home page, click bigdatasql from the list of services.

3. On the bigdatasql page, click Configuration.

4. Under Category, expand BDS Server Default Group and click Resource
Management.

5. Modify the values of the following properties as required:

■ Cgroup CPU Shares

■ Cgroup I/O Weight

■ Cgroup Memory Soft Limit

Security on Oracle Big Data Appliance

Administering Oracle Big Data Appliance 2-25

■ Cgroup Memory Hard Limit

See the Description column on the page for guidelines.

6. Click Save Changes.

7. From the Actions menu, click Restart.

Figure 2–10 shows the bigdatasql service configuration page.

Figure 2–10 Modifying the Cgroup Settings for Oracle Big Data SQL

See Also: "Allocating Resources Among Services" on page 2-10.

Security on Oracle Big Data Appliance
You can take precautions to prevent unauthorized use of the software and data on
Oracle Big Data Appliance.

This section contains these topics:

■ About Predefined Users and Groups

■ About User Authentication

■ About Fine-Grained Authorization

■ About On-Disk Encryption

■ Port Numbers Used on Oracle Big Data Appliance

■ About Puppet Security

Security on Oracle Big Data Appliance

2-26 Oracle Big Data Appliance Software User's Guide

About Predefined Users and Groups
Every open-source package installed on Oracle Big Data Appliance creates one or
more users and groups. Most of these users do not have login privileges, shells, or
home directories. They are used by daemons and are not intended as an interface for
individual users. For example, Hadoop operates as the hdfs user, MapReduce operates
as mapred, and Hive operates as hive.

You can use the oracle identity to run Hadoop and Hive jobs immediately after the
Oracle Big Data Appliance software is installed. This user account has login privileges,
a shell, and a home directory.

Oracle NoSQL Database and Oracle Data Integrator run as the oracle user. Its primary
group is oinstall.

Note: Do not delete, re-create, or modify the users that are created
during installation, because they are required for the software to
operate.

Table 2–9 identifies the operating system users and groups that are created
automatically during installation of Oracle Big Data Appliance software for use by
CDH components and other software packages.

Table 2–9 Operating System Users and Groups

User Name Group Used By Login Rights

flume flume Apache Flume parent and nodes No

hbase hbase Apache HBase processes No

hdfs hadoop NameNode, DataNode No

hive hive Hive metastore and server processes No

hue hue Hue processes No

mapred hadoop ResourceManager, NodeManager, Hive
Thrift daemon

Yes

mysql mysql MySQL server Yes

oozie oozie Oozie server No

oracle dba, oinstall Oracle NoSQL Database, Oracle Loader for
Hadoop, Oracle Data Integrator, and the
Oracle DBA

Yes

puppet puppet Puppet parent (puppet nodes run as root) No

sqoop sqoop Apache Sqoop metastore No

svctag Auto Service Request No

zookeeper zookeeper ZooKeeper processes No

About User Authentication
Oracle Big Data Appliance supports Kerberos security as a software installation
option. See Chapter 3 for details about setting up clients and users to access a
Kerberos-protected cluster.

Security on Oracle Big Data Appliance

Administering Oracle Big Data Appliance 2-27

About Fine-Grained Authorization
The typical authorization model on Hadoop is at the HDFS file level, such that users
either have access to all of the data in the file or none. In contrast, Apache Sentry
integrates with the Hive and Impala SQL-query engines to provide fine-grained
authorization to data and metadata stored in Hadoop.

Oracle Big Data Appliance automatically configures Sentry during software
installation, beginning with Mammoth utility version 2.5.

See Also:

■ Cloudera Manager Help

■ Managing Clusters with Cloudera Manager at

https://www.cloudera.com/content/cloudera-content/clouder
a-docs/CM4Ent/latest/Cloudera-Manager-Managing-Clusters/M
anaging-Clusters-with-Cloudera-Manager.html

About On-Disk Encryption
On-disk encryption protects data that is at rest on disk. When on-disk encryption is
enabled, Oracle Big Data Appliance automatically encrypts and decrypts data stored
on disk. On-disk encryption does not affect user access to Hadoop data, although it
can have a minor impact on performance.

Password-based encryption encodes Hadoop data based on a password, which is the
same for all servers in a cluster. You can change the password at any time by using the
mammoth-reconfig update command. See Oracle Big Data Appliance Owner's Guide.

If a disk is removed from a server, then the encrypted data remains protected until you
install the disk in a server (the same server or a different one), startup the server, and
provide the password. If a server is powered off and removed from an Oracle Big Data
Appliance rack, then the encrypted data remains protected until you restart server and
provide the password. You must enter the password after every startup of every server
to enable access to the data. See "Starting Oracle Big Data Appliance" on page 2-22.

On-disk encryption is an option that you can select during the initial installation of the
software by the Mammoth utility. You can also enable or disable on-disk encryption at
any time by using either the mammoth-reconfig or bdacli utilities.

See Also: Oracle Big Data Appliance Owner's Guide

Port Numbers Used on Oracle Big Data Appliance
Table 2–10 identifies the port numbers that might be used in addition to those used by
CDH.

To view the ports used on a particular server:

1. In Cloudera Manager, click the Hosts tab at the top of the page to display the
Hosts page.

2. In the Name column, click a server link to see its detail page.

3. Scroll down to the Ports section.

https://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Managing-Clusters/Managing-Clusters-with-Cloudera-Manager.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Managing-Clusters/Managing-Clusters-with-Cloudera-Manager.html
https://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Managing-Clusters/Managing-Clusters-with-Cloudera-Manager.html

See Also: For the full list of CDH port numbers, go to the Cloudera
website at

http://www.cloudera.com/content/cloudera-content/cloudera-do
cs/CM5/latest/Cloudera-Manager-Installation-Guide/cm5ig_
config_ports.html

Table 2–10 Oracle Big Data Appliance Port Numbers

Service Port

Automated Service Monitor (ASM) 30920

HBase master service (node01) 60010

MySQL Database 3306

Oracle Data Integrator Agent 20910

Oracle NoSQL Database administration 5001

Oracle NoSQL Database processes 5010 to 5020

Oracle NoSQL Database registration 5000

Port map 111

Puppet master service 8140

Puppet node service 8139

rpc.statd 668

ssh 22

xinetd (service tag) 6481

Auditing Oracle Big Data Appliance

2-28 Oracle Big Data Appliance Software User's Guide

About Puppet Security
The puppet node service (puppetd) runs continuously as root on all servers. It listens
on port 8139 for "kick" requests, which trigger it to request updates from the puppet
master. It does not receive updates on this port.

The puppet master service (puppetmasterd) runs continuously as the puppet user on
the first server of the primary Oracle Big Data Appliance rack. It listens on port 8140
for requests to push updates to puppet nodes.

The puppet nodes generate and send certificates to the puppet master to register
initially during installation of the software. For updates to the software, the puppet
master signals ("kicks") the puppet nodes, which then request all configuration
changes from the puppet master node that they are registered with.

The puppet master sends updates only to puppet nodes that have known, valid
certificates. Puppet nodes only accept updates from the puppet master host name they
initially registered with. Because Oracle Big Data Appliance uses an internal network
for communication within the rack, the puppet master host name resolves using
/etc/hosts to an internal, private IP address.

Auditing Oracle Big Data Appliance
You can use Oracle Audit Vault and Database Firewall to create and monitor the audit
trails for HDFS and MapReduce on Oracle Big Data Appliance.

This section describes the Oracle Big Data Appliance plug-in:

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM5/latest/Cloudera-Manager-Installation-Guide/cm5ig_config_ports.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Installation-Guide/cdh4ig_topic_9.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Installation-Guide/cdh4ig_topic_9.html

Auditing Oracle Big Data Appliance

Administering Oracle Big Data Appliance 2-29

■ About Oracle Audit Vault and Database Firewall

■ Setting Up the Oracle Big Data Appliance Plug-in

■ Monitoring Oracle Big Data Appliance

About Oracle Audit Vault and Database Firewall
Oracle Audit Vault and Database Firewall secures databases and other critical
components of IT infrastructure in these key ways:

■ Provides an integrated auditing platform for your enterprise.

■ Captures activity on Oracle Database, Oracle Big Data Appliance, operating
systems, directories, file systems, and so forth.

■ Makes the auditing information available in a single reporting framework so that
you can understand the activities across the enterprise. You do not need to
monitor each system individually; you can view your computer infrastructure as a
whole.

Audit Vault Server provides a web-based, graphic user interface for both
administrators and auditors.

You can configure CDH/Hadoop clusters on Oracle Big Data Appliance as secured
targets. The Audit Vault plug-in on Oracle Big Data Appliance collects audit and
logging data from these services:

■ HDFS: Who makes changes to the file system.

■ Hive DDL: Who makes Hive database changes.

■ MapReduce: Who runs MapReduce jobs that correspond to file access.

■ Oozie workflows: Who runs workflow activities.

The Audit Vault plug-in is an installation option. The Mammoth utility automatically
configures monitoring on Oracle Big Data Appliance as part of the software
installation process.

See Also: For more information about Oracle Audit Vault and
Database Firewall:

http://www.oracle.com/technetwork/database/database-technolo
gies/audit-vault-and-database-firewall/overview/index.html

Setting Up the Oracle Big Data Appliance Plug-in
The Mammoth utility on Oracle Big Data Appliance performs all the steps needed to
setup the plug-in, using information that you provide.

To set up the Audit Vault plug-in for Oracle Big Data Appliance:

1. Ensure that Oracle Audit Vault and Database Firewall Server Release 12.1.1 is up
and running on the same network as Oracle Big Data Appliance.

See Also: Oracle Audit Vault and Database Firewall Installation Guide

2. Complete the Audit Vault Plug-in section of Oracle Big Data Appliance
Configuration Generation Utility.

3. Install the Oracle Big Data Appliance software using the Mammoth utility. An
Oracle representative typically performs this step.

http://www.oracle.com/technetwork/database/database-technologies/audit-vault-and-database-firewall/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/audit-vault-and-database-firewall/overview/index.html

Auditing Oracle Big Data Appliance

2-30 Oracle Big Data Appliance Software User's Guide

You can also add the plug-in at a later time using either bdacli or
mammoth-reconfig. See Oracle Big Data Appliance Owner's Guide.

When the software installation is complete, the Audit Vault plug-in is installed on
Oracle Big Data Appliance, and Oracle Audit Vault and Database Firewall is collecting
its audit information. You do not need to perform any other installation steps.

See Also: Oracle Big Data Appliance Owner's Guide for using Oracle
Big Data Appliance Configuration Generation Utility

Monitoring Oracle Big Data Appliance
After installing the plug-in, you can monitor Oracle Big Data Appliance the same as
any other secured target. Audit Vault Server collects activity reports automatically.

The following procedure describes one type of monitoring activity.

To view an Oracle Big Data Appliance activity report:

1. Log in to Audit Vault Server as an auditor.

2. Click the Reports tab.

3. Under Built-in Reports, click Audit Reports.

4. To browse all activities, in the Activity Reports list, click the Browse report data
icon for All Activity.

5. Add or remove the filters to list the events.

Event names include ACCESS, CREATE, DELETE, and OPEN.

6. Click the Single row view icon in the first column to see a detailed report.

Figure 2–11 shows the beginning of an activity report, which records access to a
Hadoop sequence file.

Collecting Diagnostic Information for Oracle Customer Support

Administering Oracle Big Data Appliance 2-31

Figure 2–11 Activity Report in Audit Vault Server

See Also: Oracle Audit Vault and Database Firewall Auditor's Guide

Collecting Diagnostic Information for Oracle Customer Support
If you need help from Oracle Support to troubleshoot CDH issues, then you should
first collect diagnostic information using the bdadiag utility with the cm option.

To collect diagnostic information:

1. Log in to an Oracle Big Data Appliance server as root.

2. Run bdadiag with at least the cm option. You can include additional options on the
command line as appropriate. See the Oracle Big Data Appliance Owner's Guide for a
complete description of the bdadiag syntax.

bdadiag cm

The command output identifies the name and the location of the diagnostic file.

3. Go to My Oracle Support at http://support.oracle.com.

4. Open a Service Request (SR) if you have not already done so.

5. Upload the bz2 file into the SR. If the file is too large, then upload it to
sftp.oracle.com, as described in the next procedure.

To upload the diagnostics to ftp.oracle.com:

Collecting Diagnostic Information for Oracle Customer Support

2-32 Oracle Big Data Appliance Software User's Guide

1. Open an SFTP client and connect to sftp.oracle.com. Specify port 2021 and
remote directory /support/incoming/target, where target is the folder name
given to you by Oracle Support.

2. Log in with your Oracle Single Sign-on account and password.

3. Upload the diagnostic file to the new directory.

4. Update the SR with the full path and the file name.

See Also: My Oracle Support Note 549180.1 at

http://support.oracle.com

3

Supporting User Access to Oracle Big Data Appliance 3-1

3Supporting User Access to Oracle Big Data
Appliance

This chapter describes how you can support users who run MapReduce jobs on Oracle
Big Data Appliance or use Oracle Big Data Connectors. It contains these sections:

■ About Accessing a Kerberos-Secured Cluster

■ Providing Remote Client Access to CDH

■ Providing Remote Client Access to Hive

■ Managing User Accounts

■ Recovering Deleted Files

About Accessing a Kerberos-Secured Cluster
Apache Hadoop is not an inherently secure system. It is protected only by network
security. After a connection is established, a client has full access to the system.

To counterbalance this open environment, Oracle Big Data Appliance supports
Kerberos security as a software installation option. Kerberos is a network
authentication protocol that helps prevent malicious impersonation.

CDH provides these securities when configured to use Kerberos:

■ The CDH master nodes, NameNodes, and JournalNodes resolve the group name
so that users cannot manipulate their group memberships.

■ Map tasks run under the identity of the user who submitted the job.

■ Authorization mechanisms in HDFS and MapReduce help control user access to
data.

If the Oracle Big Data Appliance cluster is secured with Kerberos, then you must take
additional steps to authenticate a CDH client and individual users, as described in this
chapter. Users must know their Kerberos user name, password, and realm.

Table 3–1 describes some frequently used Kerberos commands. For more information,
see the MIT Kerberos documentation.

Table 3–1 Kerberos User Commands

Command Description

kinit userid@realm Obtains a Kerberos ticket.

klist Lists a Kerberos ticket if you have one already.

kdestroy Invalidates a ticket before it expires.

Providing Remote Client Access to CDH

3-2 Oracle Big Data Appliance Software User's Guide

Providing Remote Client Access to CDH
Oracle Big Data Appliance supports full local access to all commands and utilities in
Cloudera's Distribution including Apache Hadoop (CDH).

You can use a browser on any computer that has access to the client network of Oracle
Big Data Appliance to access Cloudera Manager, Hadoop Map/Reduce
Administration, the Hadoop Task Tracker interface, and other browser-based Hadoop
tools.

To issue Hadoop commands remotely, however, you must connect from a system
configured as a CDH client with access to the Oracle Big Data Appliance client
network. This section explains how to set up a computer so that you can access HDFS
and submit MapReduce jobs on Oracle Big Data Appliance.

See Also: My Oracle Support ID 1506203.1

Prerequisites
Ensure that you have met the following prerequisites:

■ You must have these access privileges:

– Sudo access to the client system

– Login access to Cloudera Manager

If you do not have these privileges, then contact your system administrator for
help.

■ The client system must run an operating system that Cloudera supports for CDH5.
See the Cloudera CDH5 Installation Guide at

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/lat
est/CDH5-Requirements-and-Supported-Versions/cdhrsv_os.html

■ The client system must run Oracle JDK 1.7.0_25 or later.

To verify the version, use this command:

$ java -version
java version "1.7.0_65"
Java(TM) SE Runtime Environment (build 1.7.0_65-b17)
Java HotSpot(TM) 64-Bit Server VM (build 24.65-b04, mixed mode)

kpasswd userid@realm Changes your password.

See Also:

■ MIT Kerberos Documentation at

http://web.mit.edu/kerberos/krb5-latest/doc/

■ CDH4 Security Guide at

http://www.cloudera.com/content/cloudera-content/cloudera
-docs/CDH5/latest/CDH5-Security-Guide/CDH5-Security-Guide
.html

Table 3–1 (Cont.) Kerberos User Commands

Command Description

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Requirements-and-Supported-Versions/cdhrsv_os.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Requirements-and-Supported-Versions/cdhrsv_os.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Security-Guide/CDH5-Security-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Security-Guide/CDH5-Security-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Security-Guide/CDH5-Security-Guide.html

Providing Remote Client Access to CDH

Supporting User Access to Oracle Big Data Appliance 3-3

Installing a CDH Client on Any Supported Operating System
To install a CDH client on any operating system identified as supported by Cloudera,
follow these instructions.

To install the CDH client software:

1. Log in to the client system.

2. If an earlier version of Hadoop is already installed, then remove it.

See the Cloudera documentation for removing an earlier CDH version at

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/lat
est/CDH5-Installation-Guide/cdh5ig_to_cdh5_upgrade.html?scroll=topic_6_
3_4_unique_1

3. Copy the CDH software from any node in a CDH cluster on Oracle Big Data
Appliance. For example, the following file contains the CDH 5.3.0 software:

/opt/oss/src/CDH/5.3.0-ol5/hadoop-2.5.0-cdh5.3.0.tar.gz

4. Decompress the file into a permanent location, which will be the Hadoop home
directory. The following command unzips the files into hadoop-2.5.0-cdh5.3.0 in
the current directory:

tar -xvzf hadoop-2.5.0-cdh5.3.0.tar.gz

5. Configure the CDH client. See "Configuring a CDH Client for an Unsecured
Cluster" on page 3-3.

Configuring a CDH Client for an Unsecured Cluster
After installing CDH, you must configure it for use with Oracle Big Data Appliance.

The commands in this procedure that reference HADOOP_HOME are used to support older
Hadoop clients that require this environment variable. The cluster uses YARN (MRv2)
and does not use HADOOP_HOME. If no older clients access the cluster, then you can omit
these commands.

To configure the Hadoop client:

1. Log in to the client system and download the MapReduce client configuration
from Cloudera Manager. In this example, Cloudera Manager listens on port 7180
(the default) of bda01node03.example.com, and the configuration is stored in a file
named yarn-conf.zip.

$ wget -O yarn-conf.zip
http://bda01node03.example.com:7180/cmf/services/3/client-config

2. Unzip mapreduce-config.zip into a permanent location on the client system.

$ unzip yarn-config.zip
Archive: yarn-config.zip
 inflating: yarn-conf/hadoop-env.sh
 inflating: yarn-conf/hdfs-site.xml
 inflating: yarn-conf/core-site.xml
 inflating: yarn-conf/mapred-site.xml
 inflating: yarn-conf/log4j.properties
 inflating: yarn-conf/yarn-site.xml

All files are stored in a subdirectory named yarn-config.

3. Set the symbolic links:

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Installation-Guide/cdh5ig_to_cdh5_upgrade.html?scroll=topic_6_3_4_unique_1
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Installation-Guide/cdh5ig_to_cdh5_upgrade.html?scroll=topic_6_3_4_unique_1
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Installation-Guide/cdh5ig_to_cdh5_upgrade.html?scroll=topic_6_3_4_unique_1

Providing Remote Client Access to CDH

3-4 Oracle Big Data Appliance Software User's Guide

ln -s $HADOOP_HOME/../../../bin-mapreduce1 $HADOOP_HOME/bin
ln -s $HADOOP_HOME/../../../etc/hadoop-mapreduce1 $HADOOP_HOME/conf
rm -f $HADOOP_HOME/lib/slf4j-log4j*jar

4. Open hadoop-env.sh in a text editor and set the environment variables to the
actual paths on your system:

export HADOOP_HOME=hadoop-home-dir/share/hadoop/mapreduce1
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_CONF_DIR=yarn-conf-dir
export JAVA_HOME=/usr/java/version
alias hadoop=$HADOOP_HOME/bin/hadoop
alias hdfs=$HADOOP_HOME/../../../bin/hdfs

5. Make a backup copy of the Hadoop configuration files:

cp /full_path/yarn-conf /full_path/yarn-conf-bak

6. Overwrite the existing configuration files with the downloaded configuration files
in Step 2.

cd /full_path/yarn-conf
cp * /usr/lib/hadoop/conf

Configuring a CDH Client for a Kerberos-Secured Cluster
Follow these steps to enable the CDH client to work with a secure CDH cluster.

To configure a CDH client for Kerberos:

1. Log in to the system where you created the CDH client.

2. Install the Java Cryptography Extension Unlimited Strength Jurisdiction Policy
Files:

a. Download the files for your Java version:

Java 6:
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-downl
oad-429243.html

Java 7:
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-downl
oad-432124.html

b. Decompress the downloaded file. This example unzips JCE-7:

$ unzip UnlimitedJCEPolicyJDK7.zip
Archive: UnlimitedJCEPolicyJDK7.zip
 creating: UnlimitedJCEPolicy/
 inflating: UnlimitedJCEPolicy/US_export_policy.jar
 inflating: UnlimitedJCEPolicy/local_policy.jar
 inflating: UnlimitedJCEPolicy/README.txt

Note: The JCE-6 files unzip into a directory named jce instead of
UnlimitedJCEPolicy.

c. Copy the unzipped files into the Java security directory. For example:

$ cp UnlimitedJCEPolicy/* /usr/java/latest/jre/lib/security/

http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html

Providing Remote Client Access to CDH

Supporting User Access to Oracle Big Data Appliance 3-5

3. Follow the steps for configuring an unsecured client.

See "Configuring a CDH Client for an Unsecured Cluster" on page 3-3.

4. Ensure that you have a user ID on the CDH cluster that had been added to the
Kerberos realm.

See "Creating Hadoop Cluster Users" on page 3-8.

5. On the CDH client system, create a file named krb5.conf in the $HADOOP_CONF_DIR
directory. Enter configuration settings like the following, using values appropriate
for your installation for the server names, domain, and realm:

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 clockskew = 3600
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true

[realms]
 EXAMPLE.COM = {
 kdc = bda01node01.example:88
 admin_server = bda01node07:749
 default_domain = example.com
 }

[domain_realm]
 .com = EXAMPLE.COM

6. Activate the new configuration file:

export KRB5_CONFIG=$HADOOP_CONF_DIR/krb5.conf
export HADOOP_OPTS="-Djava.security.krb5.conf=$HADOOP_CONF_DIR/krb5.conf"
export KRB5CCNAME=$HADOOP_CONF_DIR/krb5cc_$USER

7. Verify that you have access to the Oracle Big Data Appliance cluster.

See "Verifying Access to a Cluster from the CDH Client" on page 3-5.

Verifying Access to a Cluster from the CDH Client
Follow this procedure to ensure that you have access to the Oracle Big Data Appliance
cluster.

To verify cluster access:

1. To access a Kerberos-protected CDH cluster, first obtain a ticket granting ticket
(TGT):

$ kinit userid@realm

2. Verify that you can access HDFS on Oracle Big Data Appliance from the client, by
entering a simple Hadoop file system command like the following:

$ hadoop fs -ls /user
Found 6 items

drwxr-xr-x - jdoe hadoop 0 2014-04-03 00:08 /user/jdoe
drwxrwxrwx - mapred hadoop 0 2014-04-02 23:25 /user/history
drwxr-xr-x - hive supergroup 0 2014-04-02 23:27 /user/hive

Providing Remote Client Access to Hive

3-6 Oracle Big Data Appliance Software User's Guide

drwxrwxr-x - impala impala 0 2014-04-03 10:45 /user/impala
drwxr-xr-x - oozie hadoop 0 2014-04-02 23:27 /user/oozie
drwxr-xr-x - oracle hadoop 0 2014-04-03 11:49 /user/oracle

Check the output for HDFS users defined on Oracle Big Data Appliance, and not
on the client system. You should see the same results as you would after entering
the command directly on Oracle Big Data Appliance.

3. Submit a MapReduce job. You must be logged in to the client system under the
same user name as your HDFS user name on Oracle Big Data Appliance.

The following example calculates the value of pi:

$ hadoop jar
/usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples-2.5.0-cdh5.2.1.jar pi 10
1000000
Number of Maps = 10
Samples per Map = 1000000
Wrote input for Map #0
Wrote input for Map #1
 .
 .
 .
Job Finished in 12.403 seconds
Estimated value of Pi is 3.14158440000000000000

4. Use Cloudera Manager to verify that the job ran on Oracle Big Data Appliance
instead of the local system. Select mapreduce Jobs from the Activities menu for a
list of jobs.

Figure 3–1 shows the job created by the previous example.

Figure 3–1 Monitoring a YARN Job in Cloudera Manager

Providing Remote Client Access to Hive
Follow this procedure to provide remote client access to Hive.

To set up a Hive client:

1. Set up a CDH client. See "Providing Remote Client Access to CDH" on page 3-2.

Providing Remote Client Access to Hive

Supporting User Access to Oracle Big Data Appliance 3-7

2. Log in to the client system and download the Hive client configuration from
Cloudera Manager. In this example, Cloudera Manager listens on port 7180 (the
default) of bda01node03.example.com, and the configuration is stored in a file
named hive-conf.zip.

$ wget -O hive-conf.zip
http://bda01node03.example.com:7180/cmf/services/5/client-config
Length: 1283 (1.3K) [application/zip]
Saving to: 'hive-conf.zip'

100%[======================================>] 1,283 --.-K/s in 0.001s

2014-05-15 08:19:06 (2.17 MB/s) - `hive-conf.zip' saved [1283/1283]

3. Unzip the file into a permanent installation directory, which will be the Hive
configuration directory:

$ unzip hive-conf.zip
Archive: hive-conf.zip
 inflating: hive-conf/hive-env.sh
 inflating: hive-conf/hive-site.xml

4. Download the Hive software from the Cloudera website:

$ wget http://archive.cloudera.com/cdh5/cdh/5/hive-0.12.0-cdh5.0.0.tar.gz
Length: 49637596 (47M) [application/x-gzip]
Saving to: 'hive-0.12.0-cdh5.0.0.tar.gz'

100%[======================================>] 49,637,596 839K/s in 47s

2014-05-15 08:22:18 (1.02 MB/s) - `hive-0.12.0-cdh5.0.0.tar.gz' saved
[49637596/49637596]

5. Decompress the file into a permanent installation directory, which will be the Hive
home directory. The following command unzips the files into the current directory
in a subdirectory named hive-0.12.0-cdh5.0.0:

$ tar -xvzf hive-0.12.0-cdh5.0.0.tar.gz
hive-0.12.0-cdh5.0.0/
hive-0.12.0-cdh5.0.0/examples/
 .
 .
 .

6. Set the following variables, replacing hive-home-dir and hive-conf-dir with the
directories you created in steps 3 and 5.

export HIVE_HOME=hive-home-dir
export HIVE_CONF_DIR=hive-conf-dir
alias hive=$HIVE_HOME/bin/hive

The following steps test whether you successfully set up a Hive client.

To verify Hive access:

1. To access a Kerberos-protected CDH cluster, first obtain a ticket granting ticket
(TGT):

$ kinit userid@realm

2. Open the Hive console:

$ hive
Logging initialized using configuration in
jar:file:/usr/lib/hive/lib/hive-common-0.12.0-cdh5.0.0.jar!/hive-log4j.properti

Managing User Accounts

3-8 Oracle Big Data Appliance Software User's Guide

es
Hive history file=/tmp/oracle/hive_job_log_
e10527ee-9637-4c08-9559-a2e5cea6cef1_831268640.txt
hive>

3. List all tables:

hive> show tables;
OK
src

Managing User Accounts
This section describes how to create users who can access HDFS, MapReduce, and
Hive. It contains the following topics:

■ Creating Hadoop Cluster Users

■ Providing User Login Privileges (Optional)

Creating Hadoop Cluster Users
When creating user accounts, define them as follows:

■ To run MapReduce jobs, users must either be in the hadoop group or be granted
the equivalent permissions.

■ To create and modify tables in Hive, users must either be in the hive group or be
granted the equivalent permissions.

■ To create Hue users, open Hue in a browser and click the User Admin icon. See
"Using Cloudera Hue to Interact With Hadoop" on page 2-6.

Creating Users on an Unsecured Cluster
To create a user on an unsecured Hadoop cluster:

1. Open an ssh connection as the root user to a noncritical node (node04 to node18).

2. Create the user's home directory:

sudo -u hdfs hadoop fs -mkdir /user/user_name

You use sudo because the HDFS super user is hdfs (not root).

3. Change the ownership of the directory:

sudo -u hdfs hadoop fs -chown user_name:hadoop /user/user_name

4. Verify that the directory is set up correctly:

hadoop fs -ls /user

5. Create the operating system user across all nodes in the cluster:

dcli useradd -G hadoop,hive[,group_name...] -m user_name

In this syntax, replace group_name with an existing group and user_name with the
new name.

6. Verify that the operating system user belongs to the correct groups:

dcli id user_name

Managing User Accounts

Supporting User Access to Oracle Big Data Appliance 3-9

7. Verify that the user's home directory was created on all nodes:

dcli ls /home | grep user_name

Example 3–1 creates a user named jdoe with a primary group of hadoop and an
addition group of hive.

Example 3–1 Creating a Hadoop User

sudo -u hdfs hadoop fs -mkdir /user/jdoe
sudo -u hdfs hadoop fs -chown jdoe:hadoop /user/jdoe
hadoop fs -ls /user
Found 5 items
drwx------ - hdfs supergroup 0 2013-01-16 13:50 /user/hdfs
drwxr-xr-x - hive supergroup 0 2013-01-16 12:58 /user/hive
drwxr-xr-x - jdoe jdoe 0 2013-01-18 14:04 /user/jdoe
drwxr-xr-x - oozie hadoop 0 2013-01-16 13:01 /user/oozie
drwxr-xr-x - oracle hadoop 0 2013-01-16 13:01 /user/oracle
dcli useradd -G hadoop,hive -m jdoe
dcli id jdoe
bda1node01: uid=1001(jdoe) gid=1003(jdoe) groups=1003(jdoe),127(hive),123(hadoop)
bda1node02: uid=1001(jdoe) gid=1003(jdoe) groups=1003(jdoe),123(hadoop),127(hive)
bda1node03: uid=1001(jdoe) gid=1003(jdoe) groups=1003(jdoe),123(hadoop),127(hive)
 .
 .
 .
dcli ls /home | grep jdoe
bda1node01: jdoe
bda1node02: jdoe
bda1node03: jdoe

Creating Users on a Secured Cluster
To create a user on a Kerberos-secured cluster:

1. Connect to Kerberos as the HDFS principal and execute the following commands,
replacing jdoe with the actual user name:

hdfs dfs -mkdir /user/jdoe
hdfs dfs -chown jdoe /user/jdoe
dcli -C useradd -G hadoop,hive -m jdoe
hash=$(echo "hadoop" | openssl passwd -1 -stdin)
dcli -C "usermod --pass='$hash' jdoe"

2. Log in to the key distribution center (KDC) and add a principal for the user. In the
following example, replace jdoe, bda01node01, and example.com with the correct
user name, server name, domain, and realm.

ssh -l root bda01node01.example.com kadmin.local
add_principal user_name@EXAMPLE.COM

Providing User Login Privileges (Optional)
Users do not need login privileges on Oracle Big Data Appliance to run MapReduce
jobs from a remote client. However, for those who want to log in to Oracle Big Data
Appliance, you must set a password. You can set or reset a password the same way.

To set a user password across all Oracle Big Data Appliance servers:

1. Create a Hadoop cluster user as described in "Creating Hadoop Cluster Users" on
page 3-8..

Recovering Deleted Files

3-10 Oracle Big Data Appliance Software User's Guide

2. Confirm that the user does not have a password:

dcli passwd -S user_name
bda1node01.example.com: jdoe NP 2013-01-22 0 99999 7 -1 (Empty password.)
bda1node02.example.com: jdoe NP 2013-01-22 0 99999 7 -1 (Empty password.)
bda1node03.example.com: jdoe NP 2013-01-22 0 99999 7 -1 (Empty password.)

If the output shows either "Empty password" or "Password locked," then you must
set a password.

3. Set the password:

 hash=$(echo 'password' | openssl passwd -1 -stdin); dcli "usermod
--pass='$hash' user_name"

4. Confirm that the password is set across all servers:

dcli passwd -S user_name
bda1node01.example.com: jdoe PS 2013-01-24 0 99999 7 -1 (Password set, MD5
crypt.)
bda1node02.example.com: jdoe PS 2013-01-24 0 99999 7 -1 (Password set, MD5
crypt.)
bda1node03.example.com: jdoe PS 2013-01-24 0 99999 7 -1 (Password set, MD5
crypt.)

See Also:

■ Oracle Big Data Appliance Owner's Guide for information about
dcli.

■ The Linux man page for the full syntax of the useradd command.

Recovering Deleted Files
CDH provides an optional trash facility, so that a deleted file or directory is moved to a
trash directory for a set period, instead of being deleted immediately from the system.
By default, the trash facility is enabled for HDFS and all HDFS clients.

Restoring Files from the Trash
When the trash facility is enabled, you can easily restore files that were previously
deleted.

To restore a file from the trash directory:

1. Check that the deleted file is in the trash. The following example checks for files
deleted by the oracle user:

$ hadoop fs -ls .Trash/Current/user/oracle
Found 1 items
-rw-r--r-- 3 oracle hadoop 242510990 2012-08-31 11:20
/user/oracle/.Trash/Current/user/oracle/ontime_s.dat

2. Move or copy the file to its previous location. The following example moves
ontime_s.dat from the trash to the HDFS /user/oracle directory.

$ hadoop fs -mv .Trash/Current/user/oracle/ontime_s.dat /user/oracle/ontime_
s.dat

Recovering Deleted Files

Supporting User Access to Oracle Big Data Appliance 3-11

Changing the Trash Interval
The trash interval is the minimum number of minutes that a file remains in the trash
directory before being deleted permanently from the system. The default value is 1
day (24 hours).

To change the trash interval:

1. Open Cloudera Manager. See "Managing Operations Using Cloudera Manager" on
page 2-3.

2. On the Home page under Status, click hdfs.

3. On the hdfs page, click the Configuration subtab, and then select View and Edit.

4. Search for or scroll down to the Filesystem Trash Interval property under
NameNode Default Group. See Figure 3–2.

5. Click the current value, and enter a new value in the pop-up form.

6. Click Save Changes.

7. Expand the Actions menu at the top of the page and choose Restart.

8. Open a connection as root to a node in the cluster.

9. Deploy the new configuration:

dcli -C bdagetclientconfig

Figure 3–2 shows the Filesystem Trash Interval property in Cloudera Manager.

Figure 3–2 HDFS Property Settings in Cloudera Manager

Disabling the Trash Facility
The trash facility on Oracle Big Data Appliance is enabled by default. You can change
this configuration for a cluster. When the trash facility is disabled, deleted files and
directories are not moved to the trash. They are not recoverable.

Recovering Deleted Files

3-12 Oracle Big Data Appliance Software User's Guide

Completely Disabling the Trash Facility
The following procedure disables the trash facility for HDFS. When the trash facility is
completely disabled, the client configuration is irrelevant.

To completely disable the trash facility:

1. Open Cloudera Manager. See "Managing Operations Using Cloudera Manager" on
page 2-3.

2. On the Home page under Status, click hdfs.

3. On the hdfs page, click the Configuration subtab, and then select View and Edit.

4. Search for or scroll down to the Filesystem Trash Interval property under
NameNode Default Group. See Figure 3–2.

5. Click the current value, and enter a value of 0 (zero) in the pop-up form.

6. Click Save Changes.

7. Expand the Actions menu at the top of the page and choose Restart.

Disabling the Trash Facility for Local HDFS Clients
All HDFS clients that are installed on Oracle Big Data Appliance are configured to use
the trash facility. An HDFS client is any software that connects to HDFS to perform
operations such as listing HDFS files, copying files to and from HDFS, and creating
directories.

You can use Cloudera Manager to change the local client configuration setting,
although the trash facility is still enabled.

Note: If you do not want any clients to use the trash, then you can
completely disable the trash facility. See "Completely Disabling the
Trash Facility" on page 3-12.

To disable the trash facility for local HDFS clients:

1. Open Cloudera Manager. See "Managing Operations Using Cloudera Manager" on
page 2-3.

2. On the Home page under Status, click hdfs.

3. On the hdfs page, click the Configuration subtab, and then select View and Edit.

4. Search for or scroll down to the Filesystem Trash Interval property under Gateway
Default Group. See Figure 3–2.

5. Search for or scroll down to the Use Trash property under Client Settings. See
Figure 3–2.

6. Deselect the Use Trash check box.

7. Click Save Changes. This setting is used to configure all new HDFS clients
downloaded to Oracle Big Data Appliance.

8. Open a connection as root to a node in the cluster.

9. Deploy the new configuration:

dcli -C bdagetclientconfig

Recovering Deleted Files

Supporting User Access to Oracle Big Data Appliance 3-13

Disabling the Trash Facility for a Remote HDFS Client
Remote HDFS clients are typically configured by downloading and installing a CDH
client, as described in "Providing Remote Client Access to CDH" on page 3-2. Oracle
SQL Connector for HDFS and Oracle R Advanced Analytics for Hadoop are examples
of remote clients.

To disable the trash facility for a remote HDFS client:

1. Open a connection to the system where the CDH client is installed.

2. Open /etc/hadoop/conf/hdfs-site.xml in a text editor.

3. Set the trash interval to zero:

<property>
 <name>fs.trash.interval</name>
 <value>0</value>
</property>

4. Save the file.

Recovering Deleted Files

3-14 Oracle Big Data Appliance Software User's Guide

4

Configuring Oracle Exadata Database Machine for Use with Oracle Big Data Appliance 4-1

4Configuring Oracle Exadata Database Machine
for Use with Oracle Big Data Appliance

This chapter provides information about optimizing communications between Oracle
Exadata Database Machine and Oracle Big Data Appliance. It describes how you can
configure Oracle Exadata Database Machine to use InfiniBand alone, or SDP over
InfiniBand, to communicate with Oracle Big Data Appliance.

This chapter contains the following sections:

■ About Optimizing Communications

■ Prerequisites for Optimizing Communications

■ Specifying the InfiniBand Connections to Oracle Big Data Appliance

■ Specifying the InfiniBand Connections to Oracle Exadata Database Machine

■ Enabling SDP on Exadata Database Nodes

■ Creating an SDP Listener on the InfiniBand Network

About Optimizing Communications
Oracle Exadata Database Machine and Oracle Big Data Appliance use Ethernet by
default, although typically they are also connected by an InfiniBand network. Ethernet
communications are much slower than InfiniBand. After you configure Oracle Exadata
Database Machine to communicate using InfiniBand, it can obtain data from Oracle
Big Data Appliance many times faster than before.

Moreover, client applications that run on Oracle Big Data Appliance and push the data
to Oracle Database can use Sockets Direct Protocol (SDP) for an additional
performance boost. SDP is a standard communication protocol for clustered server
environments, providing an interface between the network interface card and the
application. By using SDP, applications place most of the messaging burden upon the
network interface card, which frees the CPU for other tasks. As a result, SDP decreases
network latency and CPU utilization, and thereby improves performance.

About Applications that Pull Data Into Oracle Exadata Database Machine
Oracle SQL Connector for Hadoop Distributed File System (HDFS) is an example of an
application that pulls data into Oracle Exadata Database Machine. The connector
enables an Oracle external table to access data stored in either HDFS files or a Hive
table.

The external table provide access to the HDFS data. You can use the external table for
querying HDFS data or for loading it into an Oracle database table.

Prerequisites for Optimizing Communications

4-2 Oracle Big Data Appliance Software User's Guide

Oracle SQL Connector for HDFS functions as a Hadoop client running on the database
servers in Oracle Exadata Database Machine.

If you use Oracle SQL Connector for HDFS or another tool that pulls the data into
Oracle Exadata Database Machine, then for the best performance, you should
configure the system to use InfiniBand. See "Specifying the InfiniBand Connections to
Oracle Big Data Appliance" on page 4-2.

See Also : Oracle Big Data Connectors User's Guide for information
about Oracle SQL Connector for HDFS

About Applications that Push Data Into Oracle Exadata Database Machine
Oracle Loader for Hadoop is an example of an application that pushes data into Oracle
Exadata Database Machine. The connector is an efficient and high-performance loader
for fast movement of data from a Hadoop cluster into a table in an Oracle database.
You can use it to load data from Oracle Big Data Appliance to Oracle Exadata
Database Machine.

Oracle Loader for Hadoop functions as a database client running on the Oracle Big
Data Appliance. It must make database connections from Oracle Big Data Appliance to
Oracle Exadata Database Machine over the InfiniBand network. Use of Sockets Direct
Protocol (SDP) for these database connections further improves performance.

If you use Oracle Loader for Hadoop or another tool that pushes the data into Oracle
Exadata Database Machine, then for the best performance, you should configure the
system to use SDP over InfiniBand as described in this chapter.

See Also : Oracle Big Data Connectors User's Guide for information
about Oracle Loader for Hadoop

Prerequisites for Optimizing Communications
Oracle Big Data Appliance and Oracle Exadata Database Machine racks must be
cabled together using InfiniBand cables. The IP addresses must be unique across all
racks and use the same subnet for the InfiniBand network.

See Also:

■ Oracle Big Data Appliance Owner's Guide about multirack cabling

■ Oracle Big Data Appliance Owner's Guide about IP addresses and
subnets

Specifying the InfiniBand Connections to Oracle Big Data Appliance
You can configure Oracle Exadata Database Machine to use the InfiniBand IP
addresses of the Oracle Big Data Appliance servers. Otherwise, the default network is
Ethernet. Use of the InfiniBand network improves the performance of all data transfers
between Oracle Big Data Appliance and Oracle Exadata Database Machine.

To identify the Oracle Big Data Appliance InfiniBand IP addresses:

1. If you have not done so already, install a CDH client on Oracle Exadata Database
Machine. See "Providing Remote Client Access to CDH" on page 3-2.

2. Obtain a list of private host names and InfiniBand IP addresses for all Oracle Big
Data Appliance servers.

An Oracle Big Data Appliance rack can have 6, 12, or 18 servers.

Specifying the InfiniBand Connections to Oracle Exadata Database Machine

Configuring Oracle Exadata Database Machine for Use with Oracle Big Data Appliance 4-3

3. Log in to Oracle Exadata Database Machine with root privileges.

4. Edit /etc/hosts on Oracle Exadata Database Machine and add the Oracle Big
Data Appliance host names and InfiniBand IP addresses. The following example
shows the sequential IP numbering:

192.168.8.1 bda1node01.example.com bda1node01
192.168.8.2 bda1node02.example.com bda1node02
192.168.8.3 bda1node03.example.com bda1node03
192.168.8.4 bda1node04.example.com bda1node04
192.168.8.5 bda1node05.example.com bda1node05
192.168.8.6 bda1node06.example.com bda1node06

5. Check /etc/nsswitch.conf for a line like the following:

hosts: files dns

Ensure that the line does not reverse the order (dns files); if it does, your
additions to /etc/hosts will not be used. Edit the file if necessary.

6. Ping all Oracle Big Data Appliance servers. Ensure that ping completes and shows
the InfiniBand IP addresses.

ping bda1node01.example.com
PING bda1node01.example.com (192.168.8.1) 56(84) bytes of data.
64 bytes from bda1node01.example.com (192.168.8.1): icmp_seq=1 ttl=50 time=20.2
ms
 .
 .
 .

7. Run CDH locally on Oracle Exadata Database Machine and test HDFS
functionality by uploading a large file to an Oracle Big Data Appliance server.
Check that your network monitoring tools (such as sar) show I/O activity on the
InfiniBand devices.

To upload a file, use syntax like the following, which copies localfile.dat to the
HDFS testdir directory on node05 of Oracle Big Data Appliance:

hadoop fs -put localfile.dat hdfs://bda1node05.example.com/testdir/

Specifying the InfiniBand Connections to Oracle Exadata Database
Machine

You can configure Oracle Big Data Appliance to use the InfiniBand IP addresses of the
Oracle Exadata Database Machine servers. This configuration supports applications on
Oracle Big Data Appliance that must connect to Oracle Exadata Database Machine.

To identify the Oracle Exadata Database Machine InfiniBand IP addresses:

1. Obtain a list of private host names and InfiniBand IP addresses for all Oracle
Exadata Database Machine servers.

2. Log in to Oracle Big Data Appliance with root privileges.

3. Edit /etc/hosts on Oracle Big Data Appliance and add the Oracle Exadata
Database Machine host names and InfiniBand IP addresses.

4. Check /etc/nsswitch.conf for a line like the following:

hosts: files dns

Enabling SDP on Exadata Database Nodes

4-4 Oracle Big Data Appliance Software User's Guide

Ensure that the line does not reverse the order (dns files); if it does, your
additions to /etc/hosts will not be used. Edit the file if necessary.

5. Restart the dnsmasq service:

service dnsmasq restart

6. Ping all Oracle Exadata Database Machine servers. Ensure that ping completes
and shows the InfiniBand IP addresses.

7. Test the connection by downloading a large file to an Oracle Exadata Database
Machine server. Check that your network monitoring tools (such as sar) show I/O
activity on the InfiniBand devices.

To download a file, use syntax like the following, which copies a file named
mydata.json to the dm01ce108 storage server:

$ scp mydata.json oracle@dm01cel08-priv.example.com:mybigdata.json
oracle@dm01cel08-priv.example.com's password: password

Enabling SDP on Exadata Database Nodes
SDP improves the performance of client applications that run on Oracle Big Data
Appliance and push large data loads to Oracle Database on Oracle Exadata Database
Machine.

The following procedure describes how to enable SDP on the database nodes in an
Oracle Exadata Database Machine running Oracle Linux. You must also configure
your application on a job-by-job basis to use SDP.

To enable SDP on Oracle Exadata Database Machine:

1. Open /etc/infiniband/openib.conf file in a text editor, and add the following
line:

set: SDP_LOAD=yes

2. Save these changes and close the file.

3. To enable both SDP and TCP, open /etc/ofed/libsdp.conf in a text editor, and
add the use both rule:

use both server * :
use both client * :

4. Save these changes and close the file.

5. Open /etc/modprobe.conf file in a text editor, and add this setting:

options ib_sdp sdp_zcopy_thresh=0 recv_poll=0

6. Save these changes and close the file.

7. Replicate these changes across all database nodes in the Oracle Exadata Database
Machine rack.

8. Restart all database nodes for the changes to take effect.

9. If you have multiple Oracle Exadata Database Machine racks, then repeat these
steps on all of them.

To specify SDP protocol for a load job:

1. Add JVM options to the HADOOP_OPTS environment variable to enable JDBC SDP
export:

Creating an SDP Listener on the InfiniBand Network

Configuring Oracle Exadata Database Machine for Use with Oracle Big Data Appliance 4-5

HADOOP_OPTS="-Doracle.net.SDP=true -Djava.net.preferIPv4Stack=true"

2. In either the Hadoop command or the configuration file for the job, set the
mapred.child.java.opts configuration property to enable the child task JVMs for
SDP.

For example, use these options in the command line for a MapReduce job:

-D mapred.child.java.opts="-Doracle.net.SDP=true
-Djava.net.preferIPv4Stack=true"

3. Configure standard Ethernet communications for the job.

For example, Oracle Loader for Hadoop reads the value of the
oracle.hadoop.loader.connection.url property from a job configuration file.
The value has this syntax:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=TCP)(HOST=hostName)(PORT=portNumber)))
 (CONNECT_DATA=(SERVICE_NAME=serviceName)))

Replace hostName, portNumber, and serviceName with the appropriate values to
identify the SDP listener on your Oracle Exadata Database Machine.

4. Configure the Oracle listener on Exadata to support the SDP protocol and bind it
to a specific port address (such as 1522).

For example, Oracle Loader for Hadoop reads the value of the
oracle.hadoop.loader.connection.oci_url property from a job configuration
file. The value has this syntax:

(DESCRIPTION=(ADDRESS=(PROTOCOL=SDP)
 (HOST=hostName) (PORT=portNumber))
 (CONNECT_DATA=(SERVICE_NAME=serviceName)))

Creating an SDP Listener on the InfiniBand Network
To add a listener for the Oracle Big Data Appliance connections coming in on the
InfiniBand network, first add a network resource for the InfiniBand network with
virtual IP addresses.

Note: This example lists two nodes for an Oracle Exadata Database
Machine quarter rack. If you have an Oracle Exadata Database
Machine half or full rack, you must repeat node-specific lines for each
node in the cluster.

1. Edit /etc/hosts on each node in the Exadata rack to add the virtual IP addresses
for the InfiniBand network. Make sure that these IP addresses are not in use. For
example:

Added for Listener over IB
192.168.10.21 dm01db01-ibvip.example.com dm01db01-ibvip
192.168.10.22 dm01db02-ibvip.example.com dm01db02-ibvip

2. As the root user, create a network resource on one database node for the
InfiniBand network. For example:

/u01/app/grid/product/12.1.0.1/bin/srvctl add network -k 2 -S
192.168.10.0/255.255.255.0/bondib0

Creating an SDP Listener on the InfiniBand Network

4-6 Oracle Big Data Appliance Software User's Guide

3. Verify that the network was added correctly with a command like the following
examples:

/u01/app/grid/product/12.1.0.1/bin/crsctl stat res -t | grep net
ora.net1.network
ora.net2.network -- Output indicating new Network resource

or

/u01/app/grid/product/12.1.0.1/bin/srvctl config network -k 2
Network exists: 2/192.168.10.0/255.255.255.0/bondib0, type static -- Output
indicating Network resource on the 192.168.10.0 subnet

4. Add the virtual IP addresses on the network created in Step 2, for each node in the
cluster. For example:

srvctl add vip -n dm01db01 -A dm01db01-ibvip/255.255.255.0/bondib0 -k 2
#
srvctl add vip -n dm01db02 -A dm01db02-ibvip/255.255.255.0/bondib0 -k 2

5. As the oracle user who owns Grid Infrastructure Home, add a listener for the
virtual IP addresses created in Step 4.

srvctl add listener -l LISTENER_IB -k 2 -p TCP:1522,/SDP:1522

6. For each database that will accept connections from the middle tier, modify the
listener_networks init parameter to allow load balancing and failover across
multiple networks (Ethernet and InfiniBand). You can either enter the full
TNSNAMES syntax in the initialization parameter or create entries in tnsnames.ora
in the $ORACLE_HOME/network/admin directory. The TNSNAMES.ORA entries must
exist in GRID_HOME. The following example first updates tnsnames.ora.

Complete this step on each node in the cluster with the correct IP addresses for
that node. LISTENER_IBREMOTE should list all other nodes that are in the cluster.
DBM_IB should list all nodes in the cluster.

Note: The database instance reads the TNSNAMES only on startup.
Thus, if you modify an entry that is referred to by any init.ora
parameter (LISTENER_NETWORKS), then you must either restart the
instance or issue an ALTER SYSTEM SET LISTENER_NETWORKS command
for the modifications to take affect by the instance.

DBM =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01-scan)(PORT = 1521))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = dbm)
))

DBM_IB =
(DESCRIPTION =
(LOAD_BALANCE=on)
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01db01-ibvip)(PORT = 1522))
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01db02-ibvip)(PORT = 1522))
(CONNECT_DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = dbm)
))

Creating an SDP Listener on the InfiniBand Network

Configuring Oracle Exadata Database Machine for Use with Oracle Big Data Appliance 4-7

LISTENER_IBREMOTE =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01db02-ibvip.mycompany.com)(PORT = 1522))
))

LISTENER_IBLOCAL =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01db01-ibvip.mycompany.com)(PORT = 1522))
(ADDRESS = (PROTOCOL = SDP)(HOST = dm01db01-ibvip.mycompany.com)(PORT = 1523))
))

LISTENER_IPLOCAL =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = dm0101-vip.mycompany.com)(PORT = 1521))
))

LISTENER_IPREMOTE =
(DESCRIPTION =
(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = dm01-scan.mycompany.com)(PORT = 1521))
))

7. Connect to the database instance as sysdba.

8. Modify the listener_networks init parameter by using the SQL ALTER SYSTEM
command:

SQL> alter system set listener_networks=
 '((NAME=network2) (LOCAL_LISTENER=LISTENER_IBLOCAL)
 (REMOTE_LISTENER=LISTENER_IBREMOTE))',
 '((NAME=network1)(LOCAL_LISTENER=LISTENER_IPLOCAL)
 (REMOTE_LISTENER=LISTENER_IPREMOTE))' scope=both;

9. On the Linux command line, use the srvctl command to restart LISTENER_IB to
implement the modification in Step 7:

srvctl stop listener -l LISTENER_IB
srvctl start listener -l LISTENER_IB

Creating an SDP Listener on the InfiniBand Network

4-8 Oracle Big Data Appliance Software User's Guide

Part II
Part II Oracle Big Data Appliance Software

This part describes the software that is available only on Oracle Big Data Appliance. It
contains the following chapters:

■ Chapter 5, "Optimizing MapReduce Jobs Using Perfect Balance"

5

Optimizing MapReduce Jobs Using Perfect Balance 5-1

5Optimizing MapReduce Jobs Using
Perfect Balance

This chapter describes how you can shorten the run time of some MapReduce jobs by
using Perfect Balance. It contains the following sections:

■ What is Perfect Balance?

■ Application Requirements

■ Getting Started with Perfect Balance

■ Analyzing a Job's Reducer Load

■ About Configuring Perfect Balance

■ Running a Balanced MapReduce Job Using Perfect Balance

■ About Perfect Balance Reports

■ About Chopping

■ Troubleshooting Jobs Running with Perfect Balance

■ Using the Perfect Balance API

■ About the Perfect Balance Examples

■ Perfect Balance Configuration Property Reference

What is Perfect Balance?
The Perfect Balance feature of Oracle Big Data Appliance distributes the reducer load
in a MapReduce application so that each reduce task does approximately the same
amount of work. While the default Hadoop method of distributing the reduce load is
appropriate for many jobs, it does not distribute the load evenly for jobs with
significant data skew.

Data skew is an imbalance in the load assigned to different reduce tasks. The load is a
function of:

■ The number of keys assigned to a reducer.

■ The number of records and the number of bytes in the values per key.

The total run time for a job is extended, to varying degrees, by the time that the
reducer with the greatest load takes to finish. In jobs with a skewed load, some
reducers complete the job quickly, while others take much longer. Perfect Balance can
significantly shorten the total run time by distributing the load evenly, enabling all
reducers to finish at about the same time.

Application Requirements

5-2 Oracle Big Data Appliance Software User's Guide

Your MapReduce job can be written using either the mapred or mapreduce APIs; Perfect
Balance supports both of them.

About Balancing Jobs Across Map and Reduce Tasks
A typical Hadoop job has map and reduce tasks. Hadoop distributes the mapper
workload uniformly across Hadoop Distributed File System (HDFS) and across map
tasks, while preserving the data locality. In this way, it reduces skew in the mappers.

Hadoop also hashes the map-output keys uniformly across all reducers. This strategy
works well when there are many more keys than reducers, and each key represents a
very small portion of the workload. However, it is not effective when the mapper
output is concentrated into a small number of keys. Hashing these keys results in skew
and does not work in applications like sorting, which require range partitioning.

Perfect Balance distributes the load evenly across reducers by first sampling the data,
optionally chopping large keys into two or more smaller keys, and using a load-aware
partitioning strategy to assign keys to reduce tasks.

Ways to Use Perfect Balance Features
You can choose from two methods of running Perfect Balance features:

■ Perfect Balance: You can run a job without changing your application code by
properly configuring Perfect Balance. This is the preferred method and
appropriate for most jobs.

This method is described in "Running a Balanced MapReduce Job Using Perfect
Balance" on page 5-10, and is the primary focus of this chapter.

■ Perfect Balance API: You can add the code to run Perfect Balance to your
application code. Use this method when your application setup code must run
before using Perfect Balance. Otherwise, you should use the previous method,
which requires no change to your code.

This method is described in "Using the Perfect Balance API" on page 5-15.

Perfect Balance Components
Perfect Balance has these components:

■ Job Analyzer: Gathers and reports statistics about the MapReduce job so that you
can determine whether to use Perfect Balance.

■ Counting Reducer: Provides additional statistics to the Job Analyzer to help
gauge the effectiveness of Perfect Balance.

■ Load Balancer: Runs before the MapReduce job to generate a static partition plan,
and reconfigures the job to use the plan. The balancer includes a user-configurable,
progressive sampler that stops sampling the data as soon as it can generate a good
partitioning plan.

Application Requirements
To use Perfect Balance successfully, your application must meet the following
requirements:

■ The job is distributive, so that splitting a group of records associated with a reduce
key does not produce incorrect results for the application.

Getting Started with Perfect Balance

Optimizing MapReduce Jobs Using Perfect Balance 5-3

To balance a load, Perfect Balance subpartitions the values of large reduce keys
and sends each subpartition to a different reducer. This distribution contrasts with
the standard Hadoop practice of sending all values for a single reduce key to the
same reducer. Your application must be able to handle output from the reducers
that is not fully aggregated, so that it does not produce incorrect results.

This partitioning of values is called chopping. Applications that support chopping
have distributive reduce functions. See "About Chopping" on page 5-13.

If your application is not distributive, then you can still run Perfect Balance after
disabling the key-splitting feature. The job still benefits from using Perfect Balance,
but the load is not as evenly balanced as it is when key splitting is in effect. See the
oracle.hadoop.balancer.keyLoad.minChopBytes configuration property to
disable key splitting.

■ This release does not support combiners. Perfect Balance detects the presence of
combiners and does not balance when they are present.

Getting Started with Perfect Balance
Take the following steps to use Perfect Balance:

1. Ensure that your application meets the requirements listed in "Application
Requirements" on page 5-2.

2. Log in to the server where you will submit the job.

3. Run the examples provided with Perfect Balance to become familiar with the
product. All examples shown in this chapter are based on the shipped examples
and use the same data set. See "About the Perfect Balance Examples" on page 5-17.

4. Set the following variables using the Bash export command:

■ BALANCER_HOME: Set to the Perfect Balance installation directory, such as
/opt/oracle/orabalancer-2.2.0-h2 on Oracle Big Data Appliance (optional).
The examples in this chapter use this variable, and you can also define it for
your convenience. Perfect Balance does not require BALANCER_HOME.

■ HADOOP_CLASSPATH: Add ${BALANCER_HOME}/jlib/orabalancer-2.2.0.jar
and ${BALANCER_HOME}/jlib/commons-math-2.2.jar to the existing value.
Also add the JAR files for your application.

To enable Perfect Balance, add ${BALANCER_
HOME}/jlib/orabalancerclient-2.2.0.jar. (API mode does not use this JAR
file.)

■ HADOOP_USER_CLASSPATH_FIRST: Set to true to enable Perfect Balance; API
mode does not need this variable.

You do not need to set these variables unless you are using Perfect Balance.

5. Run Job Analyzer without the balancer and use the generated report to decide
whether the job is a good candidate for using Perfect Balance.

See "Analyzing a Job's Reducer Load" on page 5-4.

6. Decide which configuration properties to set. Create a configuration file or enter
the settings individually in the hadoop command.

See "About Configuring Perfect Balance" on page 5-9.

7. Run the job using Perfect Balance.

See "Running a Balanced MapReduce Job Using Perfect Balance" on page 5-10.

Analyzing a Job's Reducer Load

5-4 Oracle Big Data Appliance Software User's Guide

8. Use the Job Analyzer report to evaluate the effectiveness of using Perfect Balance.
See "Reading the Job Analyzer Report" on page 5-8.

9. Modify the job configuration properties as desired before rerunning the job with
Perfect Balance. See "About Configuring Perfect Balance" on page 5-9.

Analyzing a Job's Reducer Load
Job Analyzer is a component of Perfect Balance that identifies imbalances in a load,
and how effective Perfect Balance is in correcting the imbalance when actually running
the job. This section contains the following topics:

■ About Job Analyzer

■ Running Job Analyzer as a Standalone Utility

■ Running Job Analyzer Using Perfect Balance

■ Reading the Job Analyzer Report

About Job Analyzer
You can use Job Analyzer to decide whether a job is a candidate for load balancing
with Perfect Balance. Job Analyzer uses the output logs of a MapReduce job to
generate a simple report with statistics like the elapsed time and the load for each
reduce task. By default, it uses the standard Hadoop counters displayed by the
JobTracker user interface, but organizes the data to emphasize the relative
performance and load of the reduce tasks, so that you can more easily interpret the
results.

If the report shows that the data is skewed (that is, the reducers processed very
different loads and the run times varied widely), then the application is a good
candidate for Perfect Balance.

Methods of Running Job Analyzer
You can choose between two methods of running Job Analyzer:

■ As a standalone utility: Job Analyzer runs against existing job output logs. This is
a good choice when you want to analyze a job that previously ran.

■ While using Perfect Balance: Job Analyzer runs against the output logs for the
current job running with Perfect Balance. This is a good choice when you want to
analyze the current job.

Running Job Analyzer as a Standalone Utility
As a standalone utility, Job Analyzer provides a quick way to analyze the reduce load
of a previously run job.

To run Job Analyzer as a standalone utility:

1. Log in to the server where you will run Job Analyzer.

2. Locate the output logs from the job to analyze:

■ YARN clusters: Set oracle.hadoop.balancer.application_id to the job ID of
the job you want to analyze. YARN is the default on Oracle Big Data
Appliance.

Analyzing a Job's Reducer Load

Optimizing MapReduce Jobs Using Perfect Balance 5-5

You can obtain the job ID from the YARN Resource Manager web interface.
Click the application ID of a job, and then click Tracking URL. The job ID
typically begins with "job_".

Alternately, if you already ran Perfect Balance or Job Analyzer on this job, you
can read the job ID from the application_id file generated by Perfect Balance
in its report directory (outdir/_balancer by default).

■ MRv1 clusters: Set mapred.output.dir to the output directory of the job you
want to analyze.

3. Run the Job Analyzer utility as described in "Job Analyzer Utility Syntax" on
page 5-5.

4. View the Job Analyzer report in a browser.

Job Analyzer Utility Example
Example 5–1 runs a script that sets the required variables, uses the MapReduce job
logs for a job with an application ID of job_1396563311211_0947, and creates the report
in the default location. It then copies the HTML version of the report from HDFS to the
/home/jdoe local directory and opens the report in a browser.

If you want to run this example in YARN, then replace the application ID with the
application ID of the job. The application ID of the job looks like this example: job_
1396563311211_0947.

If you use MRv1 instead of YARN, then set mapred.output.dir instead of
oracle.hadoop.balancer.application_id.

Example 5–1 Running the Job Analyzer Utility

$ cat runja.sh

BALANCER_HOME=/opt/oracle/orabalancer-2.2.0-h2
export HADOOP_CLASSPATH=${BALANCER_HOME}/jlib/orabalancer-2.2.0.jar:${BALANCER_
HOME}/jlib/commons-math-2.2.jar:$HADOOP_CLASSPATH
export HADOOP_USER_CLASSPATH_FIRST=true

Command on YARN cluster
hadoop jar orabalancer.jar oracle.hadoop.balancer.tools.JobAnalyzer \
-D oracle.hadoop.balancer.application_id=job_1396563311211_0947

$ sh ./runja.sh
$
$ hadoop fs -get jdoe_nobal_outdir/_balancer/jobanalyzer-report.html /home/jdoe
$ cd /home/jdoe
$ firefox jobanalyzer-report.html

Job Analyzer Utility Syntax
The following is the syntax to run the Job Analyzer utility:

For YARN:

hadoop jar ${BALANCER_HOME}/jlib/orabalancer-2.2.0.jar
oracle.hadoop.balancer.tools.JobAnalyzer \
-D oracle.hadoop.balancer.application_id=job_number \
[ja_report_path]

For MRv1:

hadoop jar ${BALANCER_HOME}/jlib/orabalancer-2.2.0.jar

Analyzing a Job's Reducer Load

5-6 Oracle Big Data Appliance Software User's Guide

oracle.hadoop.balancer.tools.JobAnalyzer \
-D mapred.output.dir=job_output_dir \
[ja_report_path]

job_number
The application ID previously assigned to the job. YARN only.

job_output_dir
An HDFS directory where the job files are stored from previously executing the
application. MRv1 only.

ja_report_path
An HDFS directory where Job Analyzer creates its report (optional). The default
directory is job_output_dir/_balancer.

Running Job Analyzer Using Perfect Balance
When you run a job using Perfect Balance, you can configure it to run Job Analyzer
automatically. This section contains the following topics:

■ Running Job Analyzer Using Perfect Balance

■ Collecting Additional Metrics

Running Job Analyzer Using Perfect Balance
Follow these steps to run Job Analyzer using Perfect Balance:

1. Log in to the server where you will submit the job that uses Perfect Balance.

2. Set up Perfect Balance by taking the steps in "Getting Started with Perfect Balance"
on page 5-3.

3. To enable Job Analyzer, set the oracle.hadoop.balancer.autoAnalyze
configuration property to one of these values:

■ BASIC_REPORT: Enables Job Analyzer. If you set
oracle.hadoop.balancer.autoBalance to true, then Perfect Balance
automatically sets oracle.hadoop.balancer.autoAnalyze to BASIC_REPORT.

■ REDUCER_REPORT: Configures Job Analyzer to collect additional load statistics.
See "Collecting Additional Metrics" on page 5-7.

4. Decide which additional configuration properties to set, if any.

See "Perfect Balance Configuration Property Reference" on page 5-18.

5. Run the job.

Example 5–2 runs a script that sets the required variables, uses Perfect Balance to run a
job with Job Analyzer and without load balancing, and creates the report in the default
location. It then copies the HTML version of the report from HDFS to the /home/jdoe
local directory and opens the report in a browser. The output includes warnings,
which you can ignore.

Example 5–2 Running Job Analyzer with Perfect Balance

$ cat ja_nobalance.sh

set up perfect balance
BALANCER_HOME=/opt/oracle/orabalancer-2.2.0-h2
export HADOOP_CLASSPATH=${BALANCER_
HOME}/jlib/orabalancerclient-2.2.0.jar:${BALANCER_

Analyzing a Job's Reducer Load

Optimizing MapReduce Jobs Using Perfect Balance 5-7

HOME}/jlib/orabalancer-2.2.0.jar:${BALANCER_
HOME}/jlib/commons-math-2.2.jar:${HADOOP_CLASSPATH}
export HADOOP_USER_CLASSPATH_FIRST=true

run the job
hadoop jar application_jarfile.jar ApplicationClass \
 -D application_config_property \
 -D mapreduce.input.fileinputformat.inputdir=jdoe_application/input \
 -D mapreduce.output.fileoutputformat.outputdir=jdoe_nobal_outdir \
 -D mapreduce.job.name=nobal \
 -D mapreduce.job.reduces=10 \
 -D oracle.hadoop.balancer.autoBalance=false \
 -D oracle.hadoop.balancer.autoAnalyze=REDUCER_REPORT \
 -conf application_config_file.xml

$ sh ja_nobalance.sh
14/04/14 14:52:42 INFO input.FileInputFormat: Total input paths to process : 5
14/04/14 14:52:42 INFO mapreduce.JobSubmitter: number of splits:5
14/04/14 14:52:42 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_
1397066986369_3478
14/04/14 14:52:43 INFO impl.YarnClientImpl: Submitted application application_
1397066986369_3478
 .
 .
 .
File Input Format Counters
Bytes Read=112652976
File Output Format Counters
Bytes Written=384974202

$ hadoop fs -get jdoe_nobal_outdir/_balancer/jobanalyzer-report.html /home/jdoe
$ cd /home/jdoe
$ firefox jobanalyzer-report.html

Collecting Additional Metrics
The Job Analyzer report includes the load metrics for each key, if you set the
oracle.hadoop.balancer.autoAnalyze property to REDUCER_REPORT. This additional
information provides a more detailed picture of the load for each reducer, with metrics
that are not available in the standard Hadoop counters.

The Job Analyzer report also compares its predicted load with the actual load. The
difference between these values measures how effective Perfect Balance was in
balancing the job.

Job Analyzer might recommend key load coefficients for the Perfect Balance key load
model, based on its analysis of the job load. To use these recommended coefficients
when running a job with Perfect Balance, set the
oracle.hadoop.balancer.linearKeyLoad.feedbackDir property to the directory
containing the Job Analyzer report of a previously analyzed run of the job.

If the report contains recommended coefficients, then Perfect Balance automatically
uses them. If Job Analyzer encounters an error while collecting the additional metrics,
then the report does not contain the additional metrics.

Use the feedbackDir property when you do not know the values of the load model
coefficients for a job, but you have the Job Analyzer output from a previous run of the
job. Then you can set the value of feedbackDir to the directory where that output is
stored. The values recommended from those files typically perform better than the

Analyzing a Job's Reducer Load

5-8 Oracle Big Data Appliance Software User's Guide

Perfect Balance default values, because the recommended values are based on an
analysis of your job's load.

Alternately, if you already know good values of the load model coefficients for your
job, you can set the load model properties:

■ oracle.hadoop.balancer.linearKeyLoad.byteWeight

■ oracle.hadoop.balancer.linearKeyLoad.keyWeight

■ oracle.hadoop.balancer.linearKeyLoad.rowWeight

Running the job with these coefficients results in a more balanced job.

Reading the Job Analyzer Report
Job Analyzer writes its report in two formats: HTML for you, and XML for Perfect
Balance. You can open the report in a browser, either directly in HDFS or after copying
it to the local file system

To open a Job Analyzer report in HDFS in a browser:

1. Open the HDFS web interface on port 50070 of a NameNode node (node01 or
node02), using a URL like the following:

http://bda1node01.example.com:50070

2. From the Utilities menu, choose Browse the File System.

3. Navigate to the job_output_dir/_balancer directory.

To open a Job Analyzer report in the local file system in a browser:

1. Copy the report from HDFS to the local file system:

$ hadoop fs -get job_output_dir/_balancer/jobanalyzer-report.html /home/jdoe

2. Switch to the local directory:

$ cd /home/jdoe

3. Open the file in a browser:

$ firefox jobanalyzer-report.html

When inspecting the Job Analyzer report, look for indicators of skew such as:

■ The execution time of some reducers is longer than others.

■ Some reducers process more records or bytes than others.

■ Some map output keys have more records than others.

■ Some map output records have more bytes than others.

Figure 5–1 shows the beginning of the analyzer report for the inverted index (invindx)
example. It displays the key load coefficient recommendations, because this job ran
with the appropriate configuration settings. See "Collecting Additional Metrics" on
page 5-7.

The task IDs are links to tables that show the analysis of specific tasks, enabling you to
drill down for more details from the first, summary table.

This example uses an extremely small data set, but notice the differences between
tasks 7 and 8: The input records range from 3% to 29%, and their corresponding
elapsed times range from 5 to 15 seconds. This variation indicates skew.

About Configuring Perfect Balance

Optimizing MapReduce Jobs Using Perfect Balance 5-9

Figure 5–1 Job Analyzer Report for Unbalanced Inverted Index Job

About Configuring Perfect Balance
Perfect Balance uses the standard Hadoop methods of specifying configuration
properties in the command line. You can use the -conf option to identify a
configuration file, or the -D option to specify individual properties. All Perfect Balance
configuration properties have default values, and so setting them is optional.

"Perfect Balance Configuration Property Reference" on page 5-18 lists the configuration
properties in alphabetical order with a full description. The following are functional
groups of properties.

Perfect Balance Basic Properties

■ oracle.hadoop.balancer.autoAnalyze

■ oracle.hadoop.balancer.autoBalance

Running a Balanced MapReduce Job Using Perfect Balance

5-10 Oracle Big Data Appliance Software User's Guide

Job Analyzer Properties

■ oracle.hadoop.balancer.application_id

■ oracle.hadoop.balancer.tools.jobConfPath

■ oracle.hadoop.balancer.tools.jobHistoryPath

■ oracle.hadoop.balancer.tools.writeKeyBytes

Key Chopping Properties

■ oracle.hadoop.balancer.enableSorting

■ oracle.hadoop.balancer.keyLoad.minChopBytes

Load Balancing Properties

■ oracle.hadoop.balancer.confidence

■ oracle.hadoop.balancer.maxLoadFactor

■ oracle.hadoop.balancer.maxSamplesPct

■ oracle.hadoop.balancer.minSplits

Load Model Properties

■ oracle.hadoop.balancer.linearKeyLoad.feedbackDir

■ oracle.hadoop.balancer.linearKeyLoad.byteWeight

■ oracle.hadoop.balancer.linearKeyLoad.keyWeight

■ oracle.hadoop.balancer.linearKeyLoad.rowWeight

MapReduce-Related Properties

■ oracle.hadoop.balancer.useMapreduceApi

■ oracle.hadoop.balancer.inputFormat.mapred.map.tasks

■ oracle.hadoop.balancer.inputFormat.mapred.max.split.size

Partition Report Properties

■ oracle.hadoop.balancer.report.overwrite

■ oracle.hadoop.balancer.reportPath

■ oracle.hadoop.balancer.tmpDir

Sampler Properties

■ oracle.hadoop.balancer.minSplits

■ oracle.hadoop.balancer.numThreads

■ oracle.hadoop.balancer.runMode

■ oracle.hadoop.balancer.useClusterStats

Running a Balanced MapReduce Job Using Perfect Balance
Perfect Balance does not require you to make any changes to your application code. It
works by automatically running Perfect Balance for your job when you submit it to
Hadoop for execution.

To run a job with Perfect Balance:

1. Log in to the server where you will submit the job.

Running a Balanced MapReduce Job Using Perfect Balance

Optimizing MapReduce Jobs Using Perfect Balance 5-11

2. Set up Perfect Balance by following the steps in "Getting Started with Perfect
Balance" on page 5-3.

3. Configure the job with these Perfect Balance properties:

■ To enable balancing, set oracle.hadoop.balancer.autoBalance to true. This
setting also runs Job Analyzer. Load balancing is not enabled by default.

■ To allow Job Analyzer to collect additional metrics, set
oracle.hadoop.balancer.autoAnalyze to REDUCER_REPORT.

See "Collecting Additional Metrics" on page 5-7.

■ Decide which additional configuration properties to set, if any.

See "About Configuring Perfect Balance" on page 5-9.

4. Run your job as usual, using the following syntax:

bin/hadoop jar application_jarfile.jar ApplicationClass\
-D application_config_property \
-D oracle.hadoop.balancer.autoBalance=true \
-D other_perfect_balance_config_property \
-conf application_config_file.xml \
-conf perfect_balance_config_file.xml

You do not need to make any code changes to your application. You can provide
Perfect Balance configuration properties either on the command line or in a
configuration file. You can also combine Perfect Balance properties and MapReduce
properties in the same configuration file. "About Configuring Perfect Balance" on
page 5-9.

Example 5–3 runs a script named pb_balance.sh, which sets up Perfect Balance for a
job, and then runs the job. The key load metric properties are set to the values
recommended in the Job Analyzer report shown in Figure 5–1.

Example 5–3 Running a Job Using Perfect Balance

$ cat pb_balance.sh

#setup perfect balance as described in Getting Started with Perfect Balance
BALANCER_HOME=/opt/oracle/orabalancer-2.2.0-h2
export HADOOP_CLASSPATH=${BALANCER_
HOME}/jlib/orabalancerclient-2.2.0.jar:${BALANCER_
HOME}/jlib/orabalancer.jar:${BALANCER_HOME}/jlib/commons-math-2.2.jar:$HADOOP_
CLASSPATH
export HADOOP_USER_CLASSPATH_FIRST=true

setup optional properties like java heap size and garbage collector
export HADOOP_CLIENT_OPTS="–Xmx1024M ${HADOOP_CLIENT_OPTS}"

run the job with balancing and job analyzer enabled
hadoop jar application_jarfile.jarApplicationClass
 -D application_config_property \
 -D mapreduce.input.fileinputformat.inputdir=jdoe_application/input \
 -D mapreduce.output.fileoutputformat.outputdir=jdoe_outdir \
 -D mapreduce.job.name="autoinvoke" \
 -D mapreduce.job.reduces=10 \
 -D oracle.hadoop.balancer.autoBalance=true \
 -D oracle.hadoop.balancer.autoAnalyze=REDUCER_REPORT \
 -D oracle.hadoop.balancer.linearKeyLoad.keyWeight=93.98 \
 -D oracle.hadoop.balancer.linearKeyLoad.rowWeight=0.001126 \
 -D oracle.hadoop.balancer.linearKeyLoad.byteWeight=0.0 \

About Perfect Balance Reports

5-12 Oracle Big Data Appliance Software User's Guide

 -conf application_config_file.xml

$ sh ./pb_balance.sh
14/04/14 14:59:42 INFO balancer.Balancer: Creating balancer
14/04/14 14:59:42 INFO balancer.Balancer: Starting Balancer
14/04/14 14:59:43 INFO input.FileInputFormat: Total input paths to process : 5
14/04/14 14:59:46 INFO balancer.Balancer: Balancer completed
14/04/14 14:59:47 INFO input.FileInputFormat: Total input paths to process : 5
14/04/14 14:59:47 INFO mapreduce.JobSubmitter: number of splits:5
14/04/14 14:59:47 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_
1397066986369_3500
14/04/14 14:59:47 INFO impl.YarnClientImpl: Submitted application application_
1397066986369_3500
14/04/14 14:59:47 INFO mapreduce.Job: The url to track the job:
 .
 .
 .
Map-Reduce Framework
Map input records=1000000
Map output records=20000000
Map output bytes=872652976
Map output materialized bytes=175650573
Input split bytes=580
Combine input records=0
Combine output records=0
Reduce input groups=106
Reduce shuffle bytes=175650573
Reduce input records=20000000
Reduce output records=13871794
Spilled Records=60000000
Shuffled Maps =50
Failed Shuffles=0
Merged Map outputs=50
GC time elapsed (ms)=1573
CPU time spent (ms)=242850
Physical memory (bytes) snapshot=6789033984
Virtual memory (bytes) snapshot=24548044800
Total committed heap usage (bytes)=11921457152
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=112652976
File Output Format Counters
Bytes Written=384974202

About Perfect Balance Reports
Perfect Balance generates these reports when it runs a job:

■ Job Analyzer report: Contains various indicators about the distribution of the load
in a job. The report is saved in HTML for you, and XML for Perfect Balance to use.
The report is always named jobanalyzer-report.html and -.xml. See "Reading
the Job Analyzer Report" on page 5-8.

About Chopping

Optimizing MapReduce Jobs Using Perfect Balance 5-13

■ Partition report: Identifies the keys that are assigned to the various mappers. This
report is saved in XML for Perfect Balance to use; it does not contain information
of use to you. The report is named ${job_output_dir}/_balancer/orabalancer_
report.xml. It is only generated for balanced jobs.

■ Reduce key metric reports: Perfect Balance generates a report for each file
partition, when the appropriate configuration properties are set. The reports are
saved in XML for Perfect Balance to use; they do not contain information of use to
you. They are named ${job_output_dir}/_
balancer/ReduceKeyMetricList-attempt_jobid_taskid_task_attemptid.xml.
They are generated only when the counting reducer is used (that is,
oracle.hadoop.balancer.autoAnalyze=REDUCER_REPORT when using Perfect
Balance, or a call to the Balancer.configureCountingReducer method when using
the API.

See "Collecting Additional Metrics" on page 5-7.

The reports are stored by default in the job output directory
(${mapreduce.output.fileoutputformat.outputdir} in YARN and
${mapred.output.dir} in MRv1). Following is the structure of that directory:

job_output_directory
 /_SUCCESS
 /_balancer
 ReduceKeyMetricList-attempt_201305031125_0016_r_000000_0.xml
 ReduceKeyMetricList-attempt_201305031125_0016_r_000001_0.xml
 .
 .
 .
 jobanalyzer-report.html
 jobanalyzer-report.xml
 orabalancer_report.xml
 /part-r-00000
 /part-r-00001
 .
 .
 .

About Chopping
To balance a load, Perfect Balance might subpartition the values of a single reduce key
and send each subpartition to a different reducer. This partitioning of values is called
chopping.

Selecting a Chopping Method
You can configure how Perfect Balance chops the values by setting the
oracle.hadoop.balancer.enableSorting configuration property:

■ Chopping by hash partitioning: Set enableSorting=false when sorting is not
required. This is the default chopping strategy.

■ Chopping by sorting: Set enableSorting=true to sort the values in each
subpartition and order them across all subpartitions. In any parallel sort job, each
task sort the rows within the task. The job must ensure that the values in reduce
task 2 are greater than values in reduce task 1, the values in reduce task 3 are
greater than the values in reduce task 2, and so on. The job generates multiple files
containing data in sorted order, instead of one large file with sorted data.

Troubleshooting Jobs Running with Perfect Balance

5-14 Oracle Big Data Appliance Software User's Guide

For example, if a key is chopped into three subpartitions, and the subpartitions are
sent to reducers 5, 8 and 9, then the values for that key in reducer 9 are greater
than all values for that key in reducer 8, and the values for that key in reducer 8
are greater than all values for that key in reducer 5. When enableSorting=true,
Perfect Balance ensures this ordering across reduce tasks.

If an application requires that the data is aggregated across files, then you can disable
chopping by setting oracle.hadoop.balancer.keyLoad.minChopBytes=-1. Perfect
Balance still offers performance gains by combining smaller reduce keys, called bin
packing.

How Chopping Impacts Applications
If a MapReduce job aggregates the data by reduce key, then each reduce task
aggregates the values for each key within that task. However, when chopping is
enabled in Perfect Balance, the rows associated with a reduce key might be in different
reduce tasks, leading to partial aggregation. Thus, values for a reduce key are
aggregated within a reduce task, but not across reduce tasks. (The values for a reduce
key across reduce tasks can be sorted, as discussed in "Selecting a Chopping Method"
on page 5-13.)

When complete aggregation is required, you can disable chopping. Alternatively, you
can examine the application that consumes the output of your MapReduce job. The
application might work well with partial aggregation.

For example, a search engine might read in parallel the output from a MapReduce job
that creates an inverted index. The output of a reduce task is a list of words, and for
each word, a list of documents in which the word occurs. The word is the key, and the
list of documents is the value. With partial aggregation, some words have multiple
document lists instead of one aggregated list. Multiple lists are convenient for the
search engine to consume in parallel. A parallel search engine might even require
document lists to be split instead of aggregated into one list. See "About the Perfect
Balance Examples" on page 5-17 for a Hadoop job that creates an inverted index from a
document collection.

As another example, Oracle Loader for Hadoop loads data from multiple files to the
correct partition of a target table. The load step is faster when there are multiple files
for a reduce key, because they enable a higher degree of parallelism than loading from
one file for a reduce key.

Troubleshooting Jobs Running with Perfect Balance
If you get Java "out of heap space" or "GC overhead limit exceeded" errors on the client
node while running the Perfect Balance sampler, then increase the client JVM heap size
for the job.

Use the Java JVM -Xmx option.You can specify client JVM options before running the
Hadoop job, by setting the HADOOP_CLIENT_OPTS variable:

$ export HADOOP_CLIENT_OPTS="-Xmx1024M $HADOOP_CLIENT_OPTS"

Setting HADOOP_CLIENT_OPTS changes the JVM options only on the client node. It does
not change JVM options in the map and reduce tasks. See the invindx script for an
example of setting this variable.

Setting HADOOP_CLIENT_OPTS is sufficient to increase the heap size for the sampler,
regardless of whether oracle.hadoop.balancer.runMode is set to local or
distributed. When runMode=local, the sampler runs on the client node, and HADOOP_
CLIENT_OPTS sets the heap size on the client node. When runMode=distributed,

Using the Perfect Balance API

Optimizing MapReduce Jobs Using Perfect Balance 5-15

Perfect Balance automatically sets the heap size for the sampler Hadoop job based on
the -Xmx setting you provide in HADOOP_CLIENT_OPTS. Perfect Balance never changes
the heap size for the map and reduce tasks of your job, only for its sampler job.

Using the Perfect Balance API
The oracle.hadoop.balancer.Balancer class contains methods for creating a
partitioning plan, saving the plan to a file, and running the MapReduce job using the
plan. You only need to add the code to the application's job driver Java class, not
redesign the application. When you run a shell script to run the application, you can
include Perfect Balance configuration settings.

Modifying Your Java Code to Use Perfect Balance
The Perfect Balance installation directory contains a complete example, including
input data, of a Java MapReduce program that uses the Perfect Balance API.

For a description of the inverted index example and execution instructions, see
orabalancer-2.2.0-h2/examples/invindx/README.txt.

To explore the modified Java code, see
orabalancer-2.2.0-h2/examples/jsrc/oracle/hadoop/balancer/examples/invindx
/InvertedIndexMapred.java or InvertedIndexMapreduce.java.

The modifications to run Perfect Balance include the following:

■ The createBalancer method validates the configuration properties and returns a
Balancer instance.

■ The waitForCompletion method samples the data and creates a partitioning plan.

■ The addBalancingPlan method adds the partitioning plan to the job configuration
settings.

■ The configureCountingReducer method collects additional load statistics.

■ The save method saves the partition report and generates the Job Analyzer report.

Example 5–4 shows fragments from the inverted index Java code.

Example 5–4 Running Perfect Balance in a MapReduce Job

 .
 .
 .
import oracle.hadoop.balancer.Balancer;
 .
 .
 .
///// BEGIN: CODE TO INVOKE BALANCER (PART-1, before job submission) //////
 Configuration conf = job.getConfiguration();

 Balancer balancer = null;

 boolean useBalancer =
 conf.getBoolean("oracle.hadoop.balancer.driver.balance", true);
 if(useBalancer)
 {
 balancer = Balancer.createBalancer(conf);
 balancer.waitForCompletion();
 balancer.addBalancingPlan(conf);

Using the Perfect Balance API

5-16 Oracle Big Data Appliance Software User's Guide

 }

 if(conf.getBoolean("oracle.hadoop.balancer.tools.useCountingReducer", true))
 {
 Balancer.configureCountingReducer(conf);
 }
 ////////////// END: CODE TO INVOKE BALANCER (PART-1) //////////////////////

 boolean isSuccess = job.waitForCompletion(true);

 ///
 // BEGIN: CODE TO INVOKE BALANCER (PART-2, after job completion, optional)
 // If balancer ran, this saves the partition file report into the _balancer
 // sub-directory of the job output directory. It also writes a JobAnalyzer
 // report.
 Balancer.save(job);
 ////////////// END: CODE TO INVOKE BALANCER (PART-2) //////////////////////
 .
 .
 .
}

See Also: Oracle Big Data Appliance Perfect Balance Java API Reference

Running Your Modified Java Code with Perfect Balance
When you run your modified Java code, you can set the Perfect Balance properties by
using the standard hadoop command syntax:

bin/hadoop jar application_jarfile.jar ApplicationClass \
-conf application_config.xml \
-conf perfect_balance_config.xml \
-D application_config_property \
-D perfect_balance_config_property \
-libjars application_jar_path.jar...

Example 5–5 runs a script named pb_balanceapi.sh, which runs the
InvertedIndexMapreduce class example packaged in the Perfect Balance JAR file. The
key load metric properties are set to the values recommended in the Job Analyzer
report shown in Figure 5–1.

To run the InvertedIndexMapreduce class example, see "About the Perfect Balance
Examples" on page 5-17.

Example 5–5 Running the InvertedIndexMapreduce Class

$ cat pb_balanceapi.sh
BALANCER_HOME=/opt/oracle/orabalancer-2.2.0-h2
APP_JAR_FILE=/opt/oracle/orabalancer-2.2.0-h2/jlib/orabalancer-2.2.0.jar
export HADOOP_CLASSPATH=${BALANCER_HOME}/jlib/orabalancer-2.2.0.jar:${BALANCER_
HOME}/jlib/commons-math-2.2.jar:$HADOOP_CLASSPATH
export HADOOP_USER_CLASSPATH_FIRST=true

hadoop jar ${APP_JAR_FILE}
oracle.hadoop.balancer.examples.invindx.InvertedIndexMapreduce \
 -D mapreduce.input.fileinputformat.inputdir=invindx/input \
 -D mapreduce.output.fileoutputformat.outputdir=jdoe_outdir_api \
 -D mapreduce.job.name=jdoe_invindx_api \
 -D mapreduce.job.reduces=10 \
 -D oracle.hadoop.balancer.linearKeyLoad.keyWeight=93.981394 \
 -D oracle.hadoop.balancer.linearKeyLoad.rowWeight=0.001126 \

About the Perfect Balance Examples

Optimizing MapReduce Jobs Using Perfect Balance 5-17

 -D oracle.hadoop.balancer.linearKeyLoad.byteWeight=0.0

$ sh ./balanceapi.sh
14/04/14 15:03:51 INFO balancer.Balancer: Creating balancer
14/04/14 15:03:51 INFO balancer.Balancer: Starting Balancer
14/04/14 15:03:51 INFO input.FileInputFormat: Total input paths to process : 5
14/04/14 15:03:54 INFO balancer.Balancer: Balancer completed
14/04/14 15:03:55 INFO input.FileInputFormat: Total input paths to process : 5
14/04/14 15:03:55 INFO mapreduce.JobSubmitter: number of splits:5
14/04/14 15:03:55 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_
1397066986369_3510
14/04/14 15:03:55 INFO impl.YarnClientImpl: Submitted application application_
1397066986369_3510
 .
 .
 .
File Input Format Counters
Bytes Read=112652976
File Output Format Counters
Bytes Written=384974202

About the Perfect Balance Examples
The Perfect Balance installation files include a full set of examples that you can run
immediately. The InvertedIndex example is a MapReduce application that creates an
inverted index on an input set of text files. The inverted index maps words to the
location of the words in the text files. The input data is included.

About the Examples in This Chapter
The InvertedIndex example provides the basis for all examples in this chapter. They
use the same data set and run the same MapReduce application. The modifications to
the InvertedIndex example simply highlight the steps you must perform in running
your own applications with Perfect Balance.

If you want to run the examples in this chapter, or use them as the basis for running
your own jobs, then make the following changes:

■ If you are modifying the examples to run your own application, then add your
application JAR files to HADOOP_CLASSPATH and -libjars.

■ Ensure that the value of mapreduce.input.fileinputformat.inputdir identifies
the location of your data.

The invindx/input directory contains the sample data for the InvertedIndex
example. To use this data, you must first set it up. See "Extracting the Example
Data Set" on page 5-18.

■ Replace jdoe with your Hadoop user name.

■ Set the -conf option to an existing configuration file.

The jdoe_conf_invindx.xml file is a modification of the configuration file for the
InvertedIndex examples. The modified file does not have performance optimizing
settings. You can use the example configuration file as is or modify it. See
/opt/oracle/orabalancer-2.2.0-h2/examples/invindx/conf_mapreduce.xml (or
conf_mapred.xml).

■ Review the configuration settings in the file and in the shell script to ensure they
are appropriate for your job.

Perfect Balance Configuration Property Reference

5-18 Oracle Big Data Appliance Software User's Guide

■ You can run the browser from your laptop or connect to Oracle Big Data
Appliance using a client that supports graphical interfaces, such as VNC.

Extracting the Example Data Set
To run the InvertedIndex examples or any of the examples in this chapter, you must
first set up the data files.

To extract the InvertedIndex data files:

1. Log in to a server where Perfect Balance is installed.

2. Change to the examples/invindx subdirectory:

cd /opt/oracle/orabalancer-2.2.0-h2/examples/invindx

3. Unzip the data and copy it to the HDFS invindx/input directory:

./invindx -setup

For complete instructions for running the InvertedIndex example, see
/opt/oracle/orabalancer-2.2.0-h2/examples/invindx/README.txt.

Perfect Balance Configuration Property Reference
This section describes the Perfect Balance configuration properties and a few generic
Hadoop MapReduce properties that Perfect Balance reads from the job configuration:

■ MapReduce Configuration Properties

■ Job Analyzer Configuration Properties

■ Perfect Balance Configuration Properties

See "About Configuring Perfect Balance" on page 5-9 for a list of the properties
organized into functional categories.

Note: CDH5 deprecates many MapReduce properties and replaces
them with new properties. Perfect Balance continues to work with the
old property names, but Oracle recommends that you use the new
names. For the new MapReduce property names, see the Cloudera
website at:

http://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-project
-dist/hadoop-common/DeprecatedProperties.html

MapReduce Configuration Properties

mapreduce.input.fileinputformat.inputdir
Type: String

Default Value: Not defined

Description: A comma-separated list of input directories.

mapreduce.inputformat.class
Type: String

Default Value: org.apache.hadoop.mapreduce.lib.input.TextInputFormat

Description: The full name of the InputFormat class.

http://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-project-dist/hadoop-common/DeprecatedProperties.html
http://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-project-dist/hadoop-common/DeprecatedProperties.html

Perfect Balance Configuration Property Reference

Optimizing MapReduce Jobs Using Perfect Balance 5-19

mapreduce.map.class
Type: String

Default Value: org.apache.hadoop.mapreduce.Mapper

Description: The full name of the mapper class.

mapreduce.output.fileoutputformat.outputdir
Type: String

Default Value: Not defined

Description: The job output directory.

mapreduce.partitioner.class
Type: String

Default Value: org.apache.hadoop.mapreduce.lib.partition.HashPartitioner

Description: The full name of the partitioner class.

mapreduce.reduce.class
Type: String

Default Value: org.apache.hadoop.mapreduce.Reducer

Description: The full name of the reducer class.

Job Analyzer Configuration Properties

oracle.hadoop.balancer.application_id
Type: String

Default Value: Not defined

Description: The job identifier of the job you want to analyze with Job Analyzer. This
property is a parameter to the Job Analyzer utility in standalone mode on YARN
clusters; it does not apply to MRv1 clusters. See "Running Job Analyzer as a
Standalone Utility" on page 5-4.

oracle.hadoop.balancer.tools.jobConfPath
Type: String

Default Value: ${mapreduce.output.fileoutputformat.outputdir}/_logs/history

Description: The path to a Hadoop job configuration file in MRv1 (not applicable to
YARN). Job Analyzer uses this setting to locate the file.

oracle.hadoop.balancer.tools.jobHistoryPath
Type: String

Default Value: ${mapreduce.output.fileoutputformat.outputdir}/_logs/history

Description: The path to a Hadoop job history file in MRv1 (not applicable to YARN).
Job Analyzer uses this setting to locate the file.

oracle.hadoop.balancer.tools.writeKeyBytes
Type: Boolean

Default Value: false

Description: Controls whether the counting reducer collects the byte representations
of the reduce keys for the Job Analyzer. Set this property to true to represent the
unique key values in Base64 encoding in the report. A string representation of the key,

Perfect Balance Configuration Property Reference

5-20 Oracle Big Data Appliance Software User's Guide

created using key.toString, is also provided in the report. This string value may not
be unique for each key.

Perfect Balance Configuration Properties

oracle.hadoop.balancer.autoAnalyze
Type: Enumeration

Default Value: BASIC_REPORT if oracle.hadoop.balancer.autoBalance is true;
otherwise NONE

Description: Controls the behavior of the Job Analyzer when it is called using Perfect
Balance. The following values are valid:

■ NONE: Disables Job Analyzer.

■ BASIC_REPORT: Enables Job Analyzer

■ REDUCER_REPORT: Enables Job Analyzer such that it collects additional load
statistics for each reduce task in a job. See "Collecting Additional Metrics" on
page 5-7..

Perfect Balance uses this property; the Perfect BalanceAPI does not.

oracle.hadoop.balancer.autoBalance
Type: Boolean

Default Value: false

Description: Controls whether load balancing is enabled. Set to false to turn off
balancing. Perfect Balance uses this property; the Perfect Balance API does not.

oracle.hadoop.balancer.confidence
Type: Float

Default Value: 0.95

Description: The statistical confidence indicator for the load factor specified by the
oracle.hadoop.balancer.maxLoadFactor property.

This property accepts values greater than or equal to 0.5 and less than 1.0 (0.5 <= value
< 1.0). A value less than 0.5 resets the property to its default value. Oracle recommends
a value greater than or equal to 0.9. Typical values are 0.95 and 0.99.

oracle.hadoop.balancer.enableSorting
Type: Boolean

Default Value: false

Description: Controls how the map output keys are chopped, that is, split into smaller
keys:

■ false: Uses a hash function.

■ true: Uses the map output key sorting comparator as a total-order partitioning
function. The balancer preserves the total order over the values of the chopped
keys.

Perfect Balance sets this property to false when the job is not configured for
secondary sorting or when oracle.hadoop.balancer.keyLoad.minChopBytes is -1.

oracle.hadoop.balancer.inputFormat.mapred.map.tasks
Type: Integer

Perfect Balance Configuration Property Reference

Optimizing MapReduce Jobs Using Perfect Balance 5-21

Default Value: 100

Description: Sets the Hadoop mapred.map.tasks property for the duration of
sampling, just before calling the input format getSplits method. It does not change
mapred.map.tasks for the actual job. The optimal number of map tasks is a trade-off
between obtaining a good sample (larger number) and having finite memory resources
(smaller number).

Set this property to a value greater than or equal to one (1). A value less than 1 disables
the property.

Some input formats, such as DBInputFormat, use this property as a hint to determine
the number of splits returned by getSplits. Higher values indicate that more chunks
of data are sampled at random, which improves the sample.

You can increase the value for larger data sets, that is, more than a million rows of
about 100 bytes per row. However, extremely large values can cause the input format's
getSplits method to run out of memory by returning too many splits.

oracle.hadoop.balancer.inputFormat.mapred.max.split.size
Type: Long

Default Value: 1048576 (1 MB)

Description: Sets the Hadoop mapred.max.split.size property for the duration of
sampling, just before calling the input format's getSplits method. It does not change
mapred.max.split.size for the actual job.

Set this property to a value greater than or equal to one (1). A value less than 1 disables
the property. The optimal split size is a trade-off between obtaining a good sample
(smaller splits) and efficient I/O performance (larger splits).

Some input formats, such as FileInputFormat, use the maximum split size as a hint to
determine the number of splits returned by getSplits. Smaller split sizes indicate that
more chunks of data are sampled at random, which improves the sample. Set the value
small enough for good sampling performance, but no smaller. Extremely small values
can cause inefficient I/O performance, while not improving the sample.

You can increase the value for larger data sets (tens of terabytes) or if the input
format's getSplits method throws an out of memory error. Large splits are better for
I/O performance, but not for sampling.

oracle.hadoop.balancer.keyLoad.minChopBytes
Type: Long

Default Value: 0

Description: Controls whether Perfect Balance chops large map output keys into
medium keys:

■ -1: Perfect Balance does not chop large map output keys.

■ 0: Perfect Balance chops large map output keys and determines the optimal size of
each medium key.

■ Positive integer: Perfect Balance chops large map output keys into medium keys
with a size greater than or equal to the specified integer.

oracle.hadoop.balancer.linearKeyLoad.byteWeight
Type: Float

Default Value: 0.05

Perfect Balance Configuration Property Reference

5-22 Oracle Big Data Appliance Software User's Guide

Description: Weights the number of bytes per key in the linear key load model
specified by the oracle.hadoop.balancer.KeyLoadLinear class.

oracle.hadoop.balancer.linearKeyLoad.feedbackDir
Type: String

Default Value: Not defined

Description: The path to a directory that contains the Job Analyzer report for a job that
it previously analyzed. The sampler reads this report for feedback to use to optimize
the current balancing plan. You can set this property to the Job Analyzer report
directory of a job that is the same or similar to the current job, so that the feedback is
directly applicable.

If the feedback directory contains a Job Analyzer report with recommended values for
the Perfect Balance linear key load model coefficients, then Perfect Balance
automatically reads and uses them. The recommended values take precedence over
user-specified values in these configuration parameters:

■ oracle.hadoop.balancer.linearKeyLoad.byteWeight

■ oracle.hadoop.balancer.linearKeyLoad.keyWeight

■ oracle.hadoop.balancer.linearKeyLoad.rowWeight

Job Analyzer attempts to recommend good values for these coefficients. However,
Perfect Balance reads the load model coefficients from this list of configuration
properties under the following circumstances:

■ The feedbackDir property is not set.

■ The feedbackDir property is set, but the Job Analyzer report in the specified
directory does not contain a good recommendation for the load model coefficients.

oracle.hadoop.balancer.linearKeyLoad.keyWeight
Type: Float

Default Value: 50.0

Description: Weights the number of medium keys per large key in the linear key load
model specified by the oracle.hadoop.balancer.KeyLoadLinear class.

oracle.hadoop.balancer.linearKeyLoad.rowWeight
Type: Float

Default Value: 0.05

Description: Weights the number of rows per key in the linear key load model
specified by the oracle.hadoop.balancer.KeyLoadLinear class.

oracle.hadoop.balancer.maxLoadFactor
Type: Float

Default Value: 0.05

Description: The target reducer load factor that you want the balancer's partition plan
to achieve.

The load factor is the relative deviation from an estimated value. For example, if
maxLoadFactor=0.05 and confidence=0.95, then with a confidence greater than 95%,
the job's reducer loads should be, at most, 5% greater than the value in the partition
plan.

Perfect Balance Configuration Property Reference

Optimizing MapReduce Jobs Using Perfect Balance 5-23

The values of these two properties determine the sampler's stopping condition. The
balancer samples until it can generate a plan that guarantees the specified load factor
at the specified confidence level. This guarantee may not hold if the sampler stops
early because of other stopping conditions, such as the number of samples exceeds
oracle.hadoop.balancer.maxSamplesPct. The partition report logs the stopping
condition.

See oracle.hadoop.balancer.confidence.

oracle.hadoop.balancer.maxSamplesPct
Type: Float

Default Value: 0.01 (1%)

Description: Limits the number of samples that Perfect Balance can collect to a fraction
of the total input records. A value less than zero disables the property (no limit).

You may need to increase the value for Hadoop applications with very unbalanced
reducer partitions or densely clustered map-output keys. The sampler needs to sample
more data to achieve a good partitioning plan in these cases.

See oracle.hadoop.balancer.useClusterStats.

oracle.hadoop.balancer.minSplits
Type: Integer

Default Value: 5

Description: Sets the minimum number of splits that the sampler reads. If the total
number of splits is less than this value, then the sampler reads all splits. Set this
property to a value greater than or equal to one (1). A nonpositive number sets the
property to 1.

oracle.hadoop.balancer.numThreads
Type: Integer

Default Value: 5

Description: Number of sampler threads. Set this value based on the processor and
memory resources available on the node where the job is initiated. A higher number of
sampler threads implies higher concurrency in sampling. Set this property to one (1) to
disable multithreading in the sampler.

oracle.hadoop.balancer.report.overwrite
Type: Boolean

Default Value: false

Description: Controls whether Perfect Balance overwrites files in the location specified
by the oracle.hadoop.balancer.reportPath property. By default, Perfect Balance
does not overwrite files; it throws an exception. Set this property to true to allow
partition reports to be overwritten.

oracle.hadoop.balancer.reportPath
Type: String

Default Value: directory/orabalancer_report-random_unique_string.xml, where
directory for HDFS is the home directory of the user who submits the job. For the local
file system, it is the directory where the job is submitted.

Description: The path where Perfect Balance writes the partition report before the
Hadoop job output directory is available, that is, before the MapReduce job finishes

Perfect Balance Configuration Property Reference

5-24 Oracle Big Data Appliance Software User's Guide

running. At the end of the job, Perfect Balance moves the file to job_output_dir/_
balancer/orabalancer_report.xml. In the API, the save method does this task.

oracle.hadoop.balancer.runMode
Type: String

Default Value: local

Description: Specifies how to run the Perfect Balance sampler. The following values
are valid:

■ local: The sampler runs on the client node where the job is submitted.

■ distributed: The sampler runs as a Hadoop job. If the job uses the distributed
cache, then Perfect Balance automatically sets this property to distributed.

If this property is set to an invalid string, Perfect Balance resets it to local.

oracle.hadoop.balancer.tmpDir
Type: String

Default Value: /tmp/orabalancer-user_name

Description: The path to a staging directory in the file system of the job output
directory (HDFS or local). Perfect Balance creates the directory if it does not exist, and
copies the partition report to it for loading into the Hadoop distributed cache.

oracle.hadoop.balancer.useClusterStats
Type: Boolean

Default Value: true

Description: Enables the sampler to use cluster sampling statistics. These statistics
improve the accuracy of sampled estimates, such as the number of records in a
map-output key, when the map-output keys are distributed in clusters across input
splits, instead of being distributed independently across all input splits.

Set this property to false only if you are absolutely certain that the map-output keys
are not clustered. This setting improves the sampler's estimates only when there is, in
fact, no clustering. Oracle recommends leaving this property set to true, because the
distribution of map-output keys is usually unknown.

oracle.hadoop.balancer.useMapreduceApi
Type: Boolean

Default Value: true

Description: Identifies the MapReduce API used in the Hadoop job:

■ true: The job uses the mapreduce API.

■ false: The job uses the mapred API.

Part III
Part III Oracle Big Data SQL

This section describes the software distributed under the Oracle Big Data SQL license.
It contains the following chapters:

■ Chapter 6, "Using Oracle Big Data SQL for Data Access"

■ Chapter 7, "Oracle Big Data SQL Reference"

■ Chapter 8, "Copying Oracle Tables to Hadoop"

6

Using Oracle Big Data SQL for Data Access 6-1

6Using Oracle Big Data SQL for Data Access

This chapter describes Oracle Big Data SQL. It contains the following topics:

■ What Is Oracle Big Data SQL?

■ Installing Oracle Big Data SQL

■ Creating an Oracle External Table for Hive Data

■ Creating an Oracle External Table for Oracle NoSQL Database

■ Creating an Oracle External Table for Apache HBase

■ Creating an Oracle External Table for HDFS Files

■ About the SQL CREATE TABLE Statement

■ About Data Type Conversions

■ Querying External Tables

■ About Oracle Big Data SQL on Oracle Exadata Database Machine

What Is Oracle Big Data SQL?
Oracle Big Data SQL supports queries against vast amounts of big data stored in
multiple data sources, including Apache Hive, HDFS, Oracle NoSQL Database, and
Apache HBase. You can view and analyze data from various data stores together, as if
it were all stored in an Oracle database.

Using Oracle Big Data SQL, you can query data stored in a Hadoop cluster using the
complete SQL syntax. You can execute the most complex SQL SELECT statements
against data in Hadoop, either manually or using your existing applications, to tease
out the most significant insights. For example, users of the Oracle Advanced Analytics
database option can apply their data mining models, which reside in Oracle Database,
to data that is resident on Oracle Big Data Appliance.

The following sections provide further details:

■ About Oracle External Tables

■ About the Access Drivers for Oracle Big Data SQL

■ About Smart Scan Technology

■ About Data Security with Oracle Big Data SQL

What Is Oracle Big Data SQL?

6-2 Oracle Big Data Appliance Software User's Guide

About Oracle External Tables
Oracle Big Data SQL provides external tables with next generation performance gains.
An external table is an Oracle Database object that identifies and describes the
location of data outside of a database. You can query an external table using the same
SQL SELECT syntax that you use for any other database tables.

External tables use access drivers to parse the data outside the database. Each type of
external data requires a unique access driver. This release of Oracle Big Data SQL
includes two access drivers for big data: one for accessing data stored in Apache Hive,
and the other for accessing data stored in Hadoop Distributed File System (HDFS)
files.

About the Access Drivers for Oracle Big Data SQL
By querying external tables, you can access data stored in HDFS and Hive tables as if
that data was stored in tables in an Oracle database. Oracle Database accesses the data
by using the metadata provided when the external table was created.

Oracle Database 12.1.0.2 supports two new access drivers for Oracle Big Data SQL:

■ ORACLE_HIVE: Enables you to create Oracle external tables over Apache Hive data
sources. Use this access driver when you already have Hive tables defined for
your HDFS data sources. ORACLE_HIVE can also access data stored in other
locations, such as HBase, that have Hive tables defined for them.

■ ORACLE_HDFS: Enables you to create Oracle external tables directly over files stored
in HDFS. This access driver uses Hive syntax to describe a data source, assigning
default column names of COL_1, COL_2, and so forth. You do not need to create a
Hive table manually as a separate step.

Instead of acquiring the metadata from a Hive metadata store the way that
ORACLE_HIVE does, the ORACLE_HDFS access driver acquires all of the necessary
information from the access parameters. The ORACLE_HDFS access parameters are
required to specify the metadata, and are stored as part of the external table
definition in Oracle Database.

Oracle Big Data SQL uses these access drivers to optimize query performance.

About Smart Scan Technology
External tables do not have traditional indexes, so that queries against them typically
require a full table scan. However, Oracle Big Data SQL extends SmartScan
capabilities, such as filter-predicate offloads, to Oracle external tables with the
installation of Exadata storage server software on Oracle Big Data Appliance. This
technology enables Oracle Big Data Appliance to discard a huge portion of irrelevant
data—up to 99 percent of the total—and return much smaller result sets to Oracle
Exadata Database Machine. End users obtain the results of their queries significantly
faster, as the direct result of a reduced load on Oracle Database and reduced traffic on
the network.

See Also: Oracle Database Concepts for a general introduction to
external tables and pointers to more detailed information in the Oracle
Database documentation library

About Data Security with Oracle Big Data SQL
Oracle Big Data Appliance already provides numerous security features to protect
data stored in a CDH cluster on Oracle Big Data Appliance:

Installing Oracle Big Data SQL

Using Oracle Big Data SQL for Data Access 6-3

■ Kerberos authentication: Requires users and client software to provide credentials
before accessing the cluster.

■ Apache Sentry authorization: Provides fine-grained, role-based authorization to
data and metadata.

■ On-disk encryption: Protects the data on disk and at rest. For normal user access,
the data is automatically decrypted.

■ Oracle Audit Vault and Database Firewall monitoring: The Audit Vault plug-in
on Oracle Big Data Appliance collects audit and logging data from MapReduce,
HDFS, and Oozie services. You can then use Audit Vault Server to monitor these
services on Oracle Big Data Appliance

Oracle Big Data SQL adds the full range of Oracle Database security features to this
list. You can apply the same security policies and rules to your Hadoop data that you
apply to your relational data.

Installing Oracle Big Data SQL
Oracle Big Data SQL is available only on Oracle Exadata Database Machine connected
to Oracle Big Data Appliance. You must install the Oracle Big Data SQL software on
both systems.

The following topics explain how to install Oracle Big Data SQL:

■ Prerequisites for Using Oracle Big Data SQL 1.1

■ Performing the Installation

■ Running the Post-Installation Script for Oracle Big Data SQL

Prerequisites for Using Oracle Big Data SQL 1.1
Oracle Exadata Database Machine must comply with the following requirements:

■ Compute servers run Oracle Database and Oracle Enterprise Manager Grid
Control 12.1.0.2.1 or later.

■ Storage servers run Exadata storage server software 12.1.1.1 or 12.1.1.0.

■ Oracle Exadata Database Machine is configured on the same InfiniBand subnet as
Oracle Big Data Appliance

■ Oracle Exadata Database Machine is connected to Oracle Big Data Appliance by
the InfiniBand network.

Performing the Installation
Take these steps to install the Oracle Big Data SQL software on Oracle Big Data
Appliance and Oracle Exadata Database Machine:

1. Download the Oracle Database one-off patch to 12.1.0.2.1.

2. On all Oracle Exadata Database Machine compute servers, install the patch on:

■ Grid Infrastructure home

■ Oracle Database homes

See the patch README for step-by-step instructions for installing the patch.

3. On Oracle Big Data Appliance, install or upgrade the software to the latest
version. See Oracle Big Data Appliance Owner's Guide.

Installing Oracle Big Data SQL

6-4 Oracle Big Data Appliance Software User's Guide

You can select Oracle Big Data SQL as an installation option when using the
Oracle Big Data Appliance Configuration Generation Utility. See Oracle Big Data
Appliance Owner's Guide.

4. If Oracle Big Data SQL is not enabled during the installation, then use the bdacli
utility:

bdacli enable big_data_sql

See Oracle Big Data Appliance Owner's Guide.

5. On Oracle Exadata Database Machine, run the post-installation script.

See "Running the Post-Installation Script for Oracle Big Data SQL" on page 6-4.

You can use Cloudera Manager to verify that Oracle Big Data SQL is up and running.
See "Managing Oracle Big Data SQL" on page 2-24.

Running the Post-Installation Script for Oracle Big Data SQL
To run the Oracle Big Data SQL post-installation script:

1. On Oracle Exadata Database Machine, ensure that the Oracle Database listener is
running and listening on an interprocess communication (IPC) interface.

2. Verify the name of the Oracle installation owner. Typically, the oracle user owns
the installation.

3. Verify that the same user name (such as oracle) exists on Oracle Big Data
Appliance.

4. Download the bds-exa-install.sh installation script from the node where
Mammoth is installed, typically the first node in the cluster. You can use a
command such as wget or curl. This example copies the script from bda1node07:

wget http://bda1node07/bda/bds-exa-install.sh

5. As root, run the script and pass it the system identifier (SID). In this example, the
SID is orcl:

./bds-exa-install.sh oracle_sid=orcl

Note: If the Oracle installation owner is not oracle, then use the --install-user
option. See "Running the bds-exa-install Script" on page 6-4.

6. Repeat step 5 for each database instance.

When the script completes, Oracle Big Data SQL is running on the database instance.
However, if events cause the Oracle Big Data SQL agent to stop, then you must restart
it. See "Starting and Stopping the Big Data SQL Agent" on page 6-20.

Running the bds-exa-install Script
The bds-exa-install script generates a custom installation script that is run by the
owner of the Oracle home directory. That secondary script installs all the files need by
Oracle Big Data SQL into the $ORACLE_HOME/bigdatasql directory. For Oracle NoSQL
Database support, it installs the client library (kvclient.jar). It also creates the
database directory objects, and the database links for the multithreaded Oracle Big
Data SQL agent.

If the operating system user who owns Oracle home is not named oracle, then use the
--install-user option to specify the owner.

Creating an Oracle External Table for Hive Data

Using Oracle Big Data SQL for Data Access 6-5

Alternatively, you can use the --generate-only option to create the secondary script,
and then run it as the owner of $ORACLE_HOME.

bds-ex-install Syntax
The following is the bds-exa-install syntax:

./bds-exa-install.sh oracle_sid=name [option]

The option names are preceded by two hyphens (--):

--generate-only={true | false}
Set to true to generate the secondary script, but not run it, or false to generate and
run it in one step (default).

--install-user=user_name
The operating system user who owns the Oracle Database installation. The default
values is oracle.

Creating an Oracle External Table for Hive Data
You can easily create an Oracle external table for data in Apache Hive. Because the
metadata is available to Oracle Database, you can query the data dictionary for
information about Hive tables. Then you can use a PL/SQL function to generate a
basic SQL CREATE TABLE EXTERNAL ORGANIZATION statement. You can modify the
statement before execution to customize the external table.

Obtaining Information About a Hive Table
The DBMS_HADOOP PL/SQL package contains a function named CREATE_EXTDDL_FOR_
HIVE. It returns the data dictionary language (DDL) to create an external table for
accessing a Hive table. This function requires you to provide basic information about
the Hive table:

■ Name of the Hadoop cluster

■ Name of the Hive database

■ Name of the Hive table

■ Whether the Hive table is partitioned

You can obtain this information by querying the ALL_HIVE_TABLES data dictionary
view. It displays information about all Hive tables that you can access from Oracle
Database.

This example shows that the current user has access to an unpartitioned Hive table
named RATINGS_HIVE_TABLE in the default database. A user named JDOE is the owner.

SQL> SELECT cluster_id, database_name, owner, table_name, partitioned FROM all_
hive_tables;

CLUSTER_ID DATABASE_NAME OWNER TABLE_NAME PARTITIONED
------------ -------------- -------- ------------------ --------------
hadoop1 default jdoe ratings_hive_table UN-PARTITIONED

See Also: "Static Data Dictionary Views for Hive" on page 7-23

Creating an Oracle External Table for Hive Data

6-6 Oracle Big Data Appliance Software User's Guide

Using the CREATE_EXTDDL_FOR_HIVE Function
With the information from the data dictionary, you can use the CREATE_EXTDDL_FOR_
HIVE function of DBMS_HADOOP. This example specifies a database table name of
RATINGS_DB_TABLE in the current schema. The function returns the text of the CREATE
TABLE command in a local variable named DDLout, but does not execute it.

DECLARE
 DDLout VARCHAR2(4000);
BEGIN
 dbms_hadoop.create_extddl_for_hive(
 CLUSTER_ID=>'hadoop1',
 DB_NAME=>'default',
 HIVE_TABLE_NAME=>'ratings_hive_table',
 HIVE_PARTITION=>FALSE,
 TABLE_NAME=>'ratings_db_table',
 PERFORM_DDL=>FALSE,
 TEXT_OF_DDL=>DDLout
);
 dbms_output.put_line(DDLout);
END;
/

When this procedure runs, the PUT_LINE function displays the CREATE TABLE
command:

CREATE TABLE ratings_db_table (
 c0 VARCHAR2(4000),
 c1 VARCHAR2(4000),
 c2 VARCHAR2(4000),
 c3 VARCHAR2(4000),
 c4 VARCHAR2(4000),
 c5 VARCHAR2(4000),
 c6 VARCHAR2(4000),
 c7 VARCHAR2(4000))
ORGANIZATION EXTERNAL
 (TYPE ORACLE_HIVE DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS
 (
 com.oracle.bigdata.cluster=hadoop1
 com.oracle.bigdata.tablename=default.ratings_hive_table
)
) PARALLEL 2 REJECT LIMIT UNLIMITED

You can capture this information in a SQL script, and use the access parameters to
change the Oracle table name, the column names, and the data types as desired before
executing it. You might also use access parameters to specify a date format mask.

The ALL_HIVE_COLUMNS view shows how the default column names and data types are
derived. This example shows that the Hive column names are C0 to C7, and that the
Hive STRING data type maps to VARCHAR2(4000):

SQL> SELECT table_name, column_name, hive_column_type, oracle_column_type FROM
all_hive_columns;

TABLE_NAME COLUMN_NAME HIVE_COLUMN_TYPE ORACLE_COLUMN_TYPE
--------------------- ------------ ---------------- ------------------
ratings_hive_table c0 string VARCHAR2(4000)
ratings_hive_table c1 string VARCHAR2(4000)
ratings_hive_table c2 string VARCHAR2(4000)
ratings_hive_table c3 string VARCHAR2(4000)

Creating an Oracle External Table for Hive Data

Using Oracle Big Data SQL for Data Access 6-7

ratings_hive_table c4 string VARCHAR2(4000)
ratings_hive_table c5 string VARCHAR2(4000)
ratings_hive_table c6 string VARCHAR2(4000)
ratings_hive_table c7 string VARCHAR2(4000)

8 rows selected.

See Also: "DBMS_HADOOP PL/SQL Package" on page 7-2

Developing a CREATE TABLE Statement for ORACLE_HIVE
You can choose between using DBMS_HADOOP and developing a CREATE TABLE statement
from scratch. In either case, you may need to set some access parameters to modify the
default behavior of ORACLE_HIVE.

Using the Default ORACLE_HIVE Settings
The following statement creates an external table named ORDER to access Hive data:

CREATE TABLE order (cust_num VARCHAR2(10),
 order_num VARCHAR2(20),
 description VARCHAR2(100),
 order_total NUMBER (8,2))
 ORGANIZATION EXTERNAL (TYPE oracle_hive);

Because no access parameters are set in the statement, the ORACLE_HIVE access driver
uses the default settings to do the following:

■ Connects to the default Hadoop cluster.

■ Uses a Hive table named order. An error results if the Hive table does not have
fields named CUST_NUM, ORDER_NUM, DESCRIPTION, and ORDER_TOTAL.

■ Sets the value of a field to NULL if there is a conversion error, such as a CUST_NUM
value longer than 10 bytes.

Overriding the Default ORACLE_HIVE Settings
You can set properties in the ACCESS PARAMETERS clause of the external table clause,
which override the default behavior of the access driver. The following clause includes
the com.oracle.bigdata.overflow access parameter. When this clause is used in the
previous example, it truncates the data for the DESCRIPTION column that is longer than
100 characters, instead of throwing an error:

(TYPE oracle_hive
 ACCESS PARAMETERS (
 com.oracle.bigdata.overflow={"action:"truncate", "col":"DESCRIPTION"}))

The next example sets most of the available parameters for ORACLE_HIVE:

CREATE TABLE order (cust_num VARCHAR2(10),
 order_num VARCHAR2(20),
 order_date DATE,
 item_cnt NUMBER,
 description VARCHAR2(100),
 order_total (NUMBER(8,2)) ORGANIZATION EXTERNAL
 (TYPE oracle_hive
 ACCESS PARAMETERS (
 com.oracle.bigdata.tablename: order_db.order_summary
 com.oracle.bigdata.colmap: {"col":"ITEM_CNT", \
 "field":"order_line_item_count"}

Creating an Oracle External Table for Oracle NoSQL Database

6-8 Oracle Big Data Appliance Software User's Guide

 com.oracle.bigdata.overflow: {"action":"TRUNCATE", \
 "col":"DESCRIPTION"}
 com.oracle.bigdata.erroropt: [{"action":"replace", \
 "value":"INVALID_NUM" , \
 "col":["CUST_NUM","ORDER_NUM"]} ,\
 {"action":"reject", \
 "col":"ORDER_TOTAL}
))

The parameters make the following changes in the way that the ORACLE_HIVE access
driver locates the data and handles error conditions:

■ com.oracle.bigdata.tablename: Handles differences in table names. ORACLE_HIVE
looks for a Hive table named ORDER_SUMMARY in the ORDER.DB database.

■ com.oracle.bigdata.colmap: Handles differences in column names. The Hive
ORDER_LINE_ITEM_COUNT field maps to the Oracle ITEM_CNT column.

■ com.oracle.bigdata.overflow: Truncates string data. Values longer than 100
characters for the DESCRIPTION column are truncated.

■ com.oracle.bigdata.erroropt: Replaces bad data. Errors in the data for CUST_NUM
or ORDER_NUM set the value to INVALID_NUM.

Creating an Oracle External Table for Oracle NoSQL Database
You can use the ORACLE_HIVE access driver to access data stored in Oracle NoSQL
Database. However, you must first create a Hive external table that accesses the
KVStore. Then you can create an external table in Oracle Database over it, similar to
the process described in "Creating an Oracle External Table for Hive Data" on page 6-5.

This section contains the following topics:

■ Creating a Hive External Table for Oracle NoSQL Database

■ Creating the Oracle Database Table for Oracle NoSQL Data

■ About Column Data Type Mappings

■ Example of Accessing Data in Oracle NoSQL Database

Creating a Hive External Table for Oracle NoSQL Database
To provide access to the data in Oracle NoSQL Database, you create a Hive external
table over the Oracle NoSQL table. Oracle Big Data SQL provides a storage handler
named oracle.kv.hadoop.hive.table.TableStorageHandler that enables Hive to
read the Oracle NoSQL Database table format.

The following is the basic syntax of a Hive CREATE TABLE statement for a Hive external
table over an Oracle NoSQL table:

CREATE EXTERNAL TABLE tablename colname coltype[, colname coltype,...]
STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
TBLPROPERTIES (
 "oracle.kv.kvstore" = "database",
 "oracle.kv.hosts" = "nosql_node1:port[, nosql_node2:port...]",
 "oracle.kv.hadoop.hosts" = "hadoop_node1[,hadoop_node2...]",
 "oracle.kv.tableName" = "table_name");

Creating an Oracle External Table for Oracle NoSQL Database

Using Oracle Big Data SQL for Data Access 6-9

Hive CREATE TABLE Parameters

tablename
The name of the Hive external table being created.

This table name will be used in SQL queries issued in Oracle Database, so choose a
name that is appropriate for users. The name of the external table that you create in
Oracle Database must be identical to the name of this Hive table.

Table, column, and field names are case insensitive in Oracle NoSQL Database,
Apache Hive, and Oracle Database.

colname coltype
The names and data types of the columns in the Hive external table. See Table 6–1 for
the data type mappings between Oracle NoSQL Database and Hive.

Hive CREATE TABLE TBLPROPERTIES Clause

oracle.kv.kvstore
The name of the KVStore. Only upper- and lowercase letters and digits are valid in the
name.

oracle.kv.hosts
A comma-delimited list of host names and port numbers in the Oracle NoSQL
Database cluster. Each string has the format hostname:port. Enter multiple names to
provide redundancy in the event that a host fails.

oracle.kv.hadoop.hosts
A comma-delimited list of all host names in the CDH cluster in Oracle Big Data
Appliance with Oracle Big Data SQL enabled.

oracle.kv.tableName
The name of the table in Oracle NoSQL Database that stores the data for this Hive
external table.

See Also: Apache Hive Language Manual DDL at

https://cwiki.apache.org/confluence/display/Hive/LanguageMan
ual+DDL#LanguageManualDDL-Create/Drop/TruncateTable

Creating the Oracle Database Table for Oracle NoSQL Data
Use the following syntax to create an external table in Oracle Database that can access
the Oracle NoSQL data through a Hive external table:

CREATE TABLE tablename(colname colType[, colname colType...])
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_HIVE DEFAULT DIRECTORY directory
 ACCESS PARAMETERS
 (access parameters)
)
 REJECT LIMIT UNLIMITED;

In this syntax, you identify the column names and data types. For more about this
syntax, see "About the SQL CREATE TABLE Statement" on page 6-16.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Create/Drop/TruncateTable
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Create/Drop/TruncateTable

Creating an Oracle External Table for Oracle NoSQL Database

6-10 Oracle Big Data Appliance Software User's Guide

About Column Data Type Mappings
When Oracle Big Data SQL retrieves data from Oracle NoSQL Database, the data is
converted twice to another data type:

■ To a Hive data type when the data is read into the columns of the Hive external
table.

■ To an Oracle data type when the data is read into the columns of an Oracle
Database external table.

Table 6–1 identifies the supported Oracle NoSQL data types and their mappings to
Hive and Oracle Database data types. Oracle Big Data SQL does not support the
Oracle NoSQL complex data types Array, Map, and Record.

Table 6–1 Oracle NoSQL Database Data Type Mappings

Oracle NoSQL Database
Data Type Apache Hive Data Type

Oracle Database Data
Type

String STRING VARCHAR2

Boolean BOOLEAN NUMBER1

1 0 for false, and 1 for true

Integer INT NUMBER

Long INT NUMBER

Double DOUBLE NUMBER(p,s)

Float FLOAT NUMBER(p,s)

Example of Accessing Data in Oracle NoSQL Database
This example uses the sample data provided with the Oracle NoSQL Database
software:

■ Creating the Oracle NoSQL Database Example Table

■ Creating the Example Hive Table for vehicleTable

■ Creating the Oracle Table for VEHICLES

Creating the Oracle NoSQL Database Example Table
Verify that the following files reside in the examples/hadoop/table directory:

create_vehicle_table.kvs
CountTableRows.java
LoadVehicleTable.java

This example runs on a Oracle Big Data Appliance server named bda1node07 and uses
a KVStore named BDAKV.

To create and populate the sample table in Oracle NoSQL Database:

1. Open a connection to an Oracle NoSQL Database node on Oracle Big Data
Appliance.

2. Create a table named vehicleTable. The following example uses the load
command to run the commands in create_vehicle_table.kvs:

$ cd NOSQL_HOME
$ java -jar lib/kvcli.jar -host bda1node07 -port 5000 \
 load -file examples/hadoop/table/create_vehicle_table.kvs

Creating an Oracle External Table for Oracle NoSQL Database

Using Oracle Big Data SQL for Data Access 6-11

3. Compile LoadVehicleTable.java:

$ javac -cp examples:lib/kvclient.jar
examples/hadoop/table/LoadVehicleTable.java

4. Execute the LoadVehicleTable class to populate the table:

$ java -cp examples;lib/kvclient.jar hadoop.table.LoadVehicleTable -host
bda1node07 -port 5000 -store BDAKV
{"type":"auto","make":"Chrysler","model":"PTCruiser","class":"4WheelDrive","col
o
r":"white","price":20743.240234375,"count":30}
{"type":"suv","make":"Ford","model":"Escape","class":"FrontWheelDrive","color":
"
 .
 .
 .
10 new records added

The vehicleTable table contains the following fields:

Field Name Data Type

type STRING

make STRING

model STRING

class STRING

color STRING

price DOUBLE

count INTEGER

Creating the Example Hive Table for vehicleTable
The following example creates a Hive table named VEHICLES that accesses
vehicleTable in the BDAKV KVStore. Oracle Big Data Appliance is configured with a
CDH cluster in the first six servers (bda1node01 to bda1node06) and an Oracle NoSQL
Database cluster in the next three servers (bda1node07 to bda1node09).

CREATE EXTERNAL TABLE IF NOT EXISTS vehicles
 (type STRING,
 make STRING,
 model STRING,
 class STRING,
 color STRING,
 price DOUBLE,
 count INT)
COMMENT 'Accesses data in vehicleTable in the BDAKV KVStore'
STORED BY 'oracle.kv.hadoop.hive.table.TableStorageHandler'
TBLPROPERTIES
 ("oracle.kv.kvstore" = "BDAKV",
 "oracle.kv.hosts" = "bda1node07.example.com:5000,bda1node08.example.com:5000",
 "oracle.kv.hadoop.hosts" =
"bda1node01.example.com,bda1node02.example.com,bda1node03.example.com,bda1node04.e
xample.com,bda1node05.example.com,bda1node06.example.com",
 "oracle.kv.tableName" = "vehicleTable");

The DESCRIBE command lists the columns in the VEHICLES table:

Creating an Oracle External Table for Oracle NoSQL Database

6-12 Oracle Big Data Appliance Software User's Guide

hive> DESCRIBE vehicles;
OK
type string from deserializer
make string from deserializer
model string from deserializer
class string from deserializer
color string from deserializer
price double from deserializer
count int from deserializer

A query against the Hive VEHICLES table returns data from the Oracle NoSQL
vehicleTable table:

hive> SELECT make, model, class
 FROM vehicletable
 WHERE type='truck' AND color='red'
 ORDER BY make, model;
Total MapReduce jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
 .
 .
 .
Chrysler Ram1500 RearWheelDrive
Chrysler Ram2500 FrontWheelDrive
Ford F150 FrontWheelDrive
Ford F250 RearWheelDrive
Ford F250 AllWheelDrive
Ford F350 RearWheelDrive
GM Sierra AllWheelDrive
GM Silverado1500 RearWheelDrive
GM Silverado1500 AllWheelDrive
GM Silverado1500 4WheelDrive

Creating the Oracle Table for VEHICLES
After you create the Hive table, the metadata is available in the Oracle Database static
data dictionary views. The following SQL SELECT statement returns information about
the Hive table created in the previous topic:

SQL> SELECT table_name, column_name, hive_column_type
 FROM all_hive_columns
 WHERE table_name='vehicles';

TABLE_NAME COLUMN_NAME HIVE_COLUMN_TYPE
--------------- ------------ ----------------
vehicles type string
vehicles make string
vehicles model string
vehicles class string
vehicles color string
vehicles price double
vehicles count int

The next SQL CREATE TABLE statement generates an external table named VEHICLES
over the Hive VEHICLES table, using the ORACLE_HIVE access driver. The name of the
table in Oracle Database must be identical to the name of the table in Hive. However,
both Oracle NoSQL Database and Oracle Database are case insensitive.

CREATE TABLE vehicles
 (type VARCHAR2(10), make VARCHAR2(12), model VARCHAR2(20),

Creating an Oracle External Table for Apache HBase

Using Oracle Big Data SQL for Data Access 6-13

 class VARCHAR2(40), color VARCHAR2(20), price NUMBER(8,2),
 count NUMBER)
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_HIVE DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS
 (com.oracle.bigdata.debug=true com.oracle.bigdata.log.opt=normal))
 REJECT LIMIT UNLIMITED;

This SQL SELECT statement retrieves all rows for red trucks from vehicleTable in
Oracle NoSQL Database:

SQL> SELECT make, model, class
 FROM vehicles
 WHERE type='truck' AND color='red'
 ORDER BY make, model;

MAKE MODEL CLASS
------------ -------------------- ---------------------
Chrysler Ram1500 RearWheelDrive
Chrysler Ram2500 FrontWheelDrive
Ford F150 FrontWheelDrive
Ford F250 AllWheelDrive
Ford F250 RearWheelDrive
Ford F350 RearWheelDrive
GM Sierra AllWheelDrive
GM Silverado1500 RearWheelDrive
GM Silverado1500 4WheelDrive
GM Silverado1500 AllWheelDrive

Creating an Oracle External Table for Apache HBase
You can also use the ORACLE_HIVE access driver to access data stored in Apache HBase.
However, you must first create a Hive external table that accesses the HBase table.
Then you can create an external table in Oracle Database over it. The basic steps are
the same as those described in "Creating an Oracle External Table for Oracle NoSQL
Database" on page 6-8.

Creating a Hive External Table for HBase
To provide access to the data in an HBase table, you create a Hive external table over
it. Apache provides a storage handler and a SerDe that enable Hive to read the HBase
table format.

The following is the basic syntax of a Hive CREATE TABLE statement for an external
table over an HBase table:

CREATE EXTERNAL TABLE tablename colname coltype[, colname coltype,...]
ROW FORMAT
 SERDE 'org.apache.hadoop.hive.hbase.HBaseSerDe'
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES (
 'serialization.format'='1',
 'hbase.columns.mapping'=':key,value:key,value:

See Also:

■ Apache Hive Language Manual DDL at

https://cwiki.apache.org/confluence/display/Hive/Language
Manual+DDL#LanguageManualDDL-Create/Drop/TruncateTable

■ Hive HBase Integration at

https://cwiki.apache.org/confluence/display/Hive/HBaseInt
egration#HBaseIntegration-StorageHandlers

■ Class HBaseSerDe in the Hive API reference at

http://hive.apache.org/javadocs/r0.13.1/api/hbase-handler
/index.html

Creating an Oracle External Table for HDFS Files

6-14 Oracle Big Data Appliance Software User's Guide

Creating the Oracle Database Table for HBase
Use the following syntax to create an external table in Oracle Database that can access
the HBase data through a Hive external table:

CREATE TABLE tablename(colname colType[, colname colType...])
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_HIVE DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS
 (access parameters)
)
 REJECT LIMIT UNLIMITED;

In this syntax, you identify the column names and data types. To specify the access
parameters, see "About the SQL CREATE TABLE Statement" on page 6-16.

Creating an Oracle External Table for HDFS Files
The ORACLE_HDFS access driver enables you to access many types of data that are
stored in HDFS, but which do not have Hive metadata. You can define the record
format of text data, or you can specify a SerDe for a particular data format.

You must create the external table for HDFS files manually, and provide all the
information the access driver needs to locate the data, and parse the records and fields.
The following are some examples of CREATE TABLE ORGANIZATION EXTERNAL
statements.

Using the Default Access Parameters with ORACLE_HDFS
The following statement creates a table named ORDER to access the data in all files
stored in the /usr/cust/summary directory in HDFS:

CREATE TABLE ORDER (cust_num VARCHAR2(10),
 order_num VARCHAR2(20),
 order_total (NUMBER 8,2))
ORGANIZATION EXTERNAL (TYPE oracle_hdfs)
LOCATION ("hdfs:/usr/cust/summary/*");

Because no access parameters are set in the statement, the ORACLE_HDFS access driver
uses the default settings to do the following:

■ Connects to the default Hadoop cluster.

■ Reads the files as delimited text, and the fields as type STRING.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Create/Drop/TruncateTable
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Create/Drop/TruncateTable
http://hive.apache.org/javadocs/r0.13.1/api/hbase-handler/index.html
http://hive.apache.org/javadocs/r0.13.1/api/hbase-handler/index.html
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration#HBaseIntegration-StorageHandlers
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration#HBaseIntegration-StorageHandlers

Creating an Oracle External Table for HDFS Files

Using Oracle Big Data SQL for Data Access 6-15

■ Assumes that the number of fields in the HDFS files match the number of columns
(three in this example).

■ Assumes the fields are in the same order as the columns, so that CUST_NUM data is
in the first field, ORDER_NUM data is in the second field, and ORDER_TOTAL data is in
the third field.

■ Rejects any records in which the value causes a data conversion error: If the value
for CUST_NUM exceeds 10 characters, the value for ORDER_NUM exceeds 20 characters,
or the value of ORDER_TOTAL cannot be converted to NUMBER.

Overriding the Default ORACLE_HDFS Settings
You can use many of the same access parameters with ORACLE_HDFS as ORACLE_HIVE.

Accessing a Delimited Text File
The following example is equivalent to the one shown in "Overriding the Default
ORACLE_HIVE Settings" on page 6-7. The external table access a delimited text file
stored in HDFS.

CREATE TABLE order (cust_num VARCHAR2(10),
 order_num VARCHAR2(20),
 order_date DATE,
 item_cnt NUMBER,
 description VARCHAR2(100),
 order_total (NUMBER8,2)) ORGANIZATION EXTERNAL
 (TYPE oracle_hdfs
 ACCESS PARAMETERS (
 com.oracle.bigdata.colmap: {"col":"item_cnt", \
 "field":"order_line_item_count"}
 com.oracle.bigdata.overflow: {"action":"TRUNCATE", \
 "col":"DESCRIPTION"}
 com.oracle.bigdata.erroropt: [{"action":"replace", \
 "value":"INVALID NUM", \
 "col":["CUST_NUM","ORDER_NUM"]} , \
 {"action":"reject", \
 "col":"ORDER_TOTAL}]
)
 LOCATION ("hdfs:/usr/cust/summary/*"));

The parameters make the following changes in the way that the ORACLE_HDFS access
driver locates the data and handles error conditions:

■ com.oracle.bigdata.colmap: Handles differences in column names. ORDER_LINE_
ITEM_COUNT in the HDFS files matches the ITEM_CNT column in the external table.

■ com.oracle.bigdata.overflow: Truncates string data. Values longer than 100
characters for the DESCRIPTION column are truncated.

■ com.oracle.bigdata.erroropt: Replaces bad data. Errors in the data for CUST_NUM
or ORDER_NUM set the value to INVALID_NUM.

Accessing Avro Container Files
The next example uses a SerDe to access Avro container files.

CREATE TABLE order (cust_num VARCHAR2(10),
 order_num VARCHAR2(20),
 order_date DATE,
 item_cnt NUMBER,
 description VARCHAR2(100),

About the SQL CREATE TABLE Statement

6-16 Oracle Big Data Appliance Software User's Guide

 order_total (NUMBER8,2)) ORGANIZATION EXTERNAL
 (TYPE oracle_hdfs
 ACCESS PARAMETERS (
 com.oracle.bigdata.rowformat: \
 SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
 com.oracle.bigdata.fileformat: \
 INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'\
 OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
 com.oracle.bigdata.colmap: { "col":"item_cnt", \
 "field":"order_line_item_count"}
 com.oracle.bigdata.overflow: {"action":"TRUNCATE", \
 "col":"DESCRIPTION"}

 LOCATION ("hdfs:/usr/cust/summary/*"));

The access parameters provide the following information to the ORACLE_HDFS access
driver:

■ com.oracle.bigdata.rowformat: Identifies the SerDe that the access driver needs
to use to parse the records and fields. The files are not in delimited text format.

■ com.oracle.bigdata.fileformat: Identifies the Java classes that can extract
records and output them in the desired format.

■ com.oracle.bigdata.colmap: Handles differences in column names. ORACLE_HDFS
matches ORDER_LINE_ITEM_COUNT in the HDFS files with the ITEM_CNT column in
the external table.

■ com.oracle.bigdata.overflow: Truncates string data. Values longer than 100
characters for the DESCRIPTION column are truncated.

About the SQL CREATE TABLE Statement
The SQL CREATE TABLE statement has a clause specifically for creating external tables.
The information that you provide in this clause enables the access driver to read data
from an external source and prepare the data for the external table.

Basic Syntax
The following is the basic syntax of the CREATE TABLE statement for external tables:

CREATE TABLE table_name (column_name datatype,
 column_name datatype[,...])
 ORGANIZATION EXTERNAL (external_table_clause);

You specify the column names and data types the same as for any other table.
ORGANIZATION EXTERNAL identifies the table as an external table.

The external_table_clause identifies the access driver and provides the information that
it needs to load the data. See "About the External Table Clause" on page 6-16.

About the External Table Clause
CREATE TABLE ORGANIZATION EXTERNAL takes the external_table_clause as its argument.
It has the following subclauses:

■ TYPE Clause

■ DEFAULT DIRECTORY Clause

■ LOCATION Clause

About the SQL CREATE TABLE Statement

Using Oracle Big Data SQL for Data Access 6-17

■ REJECT LIMIT Clause

■ ORACLE_HIVE Access Parameters

See Also: Oracle Database SQL Language Reference for the external_
table_clause

TYPE Clause
The TYPE clause identifies the access driver. The type of access driver determines how
the other parts of the external table definition are interpreted.

Specify one of the following values for Oracle Big Data SQL:

■ ORACLE_HDFS: Accesses files in an HDFS directory.

■ ORACLE_HIVE: Accesses a Hive table.

Note: The ORACLE_DATAPUMP and ORACLE_LOADER access drivers are
not associated with Oracle Big Data SQL.

DEFAULT DIRECTORY Clause
The DEFAULT DIRECTORY clause identifies an Oracle Database directory object. The
directory object identifies an operating system directory with files that the external
table reads and writes.

ORACLE_HDFS and ORACLE_HIVE use the default directory solely to write log files on the
Oracle Database system.

LOCATION Clause
The LOCATION clause identifies the data source.

ORACLE_HDFS LOCATION Clause
The LOCATION clause for ORACLE_HDFS contains a comma-separated list of file locations.
The files must reside in the HDFS file system on the default cluster.

A location can be any of the following:

■ A fully qualified HDFS name, such as /user/hive/warehouse/hive_seed/hive_
types. ORACLE_HDFS uses all files in the directory.

■ A fully qualified HDFS file name, such as /user/hive/warehouse/hive_
seed/hive_types/hive_types.csv

■ A URL for an HDFS file or a set of files, such as
hdfs:/user/hive/warehouse/hive_seed/hive_types/*. Just a directory name is
invalid.

The file names can contain any pattern-matching character described in Table 6–2.

Table 6–2 Pattern-Matching Characters

Character Description

? Matches any one character

* Matches zero or more characters

[abc] Matches one character in the set {a, b, c}

About Data Type Conversions

6-18 Oracle Big Data Appliance Software User's Guide

ORACLE_HIVE LOCATION Clause
Do not specify the LOCATION clause for ORACLE_HIVE; it raises an error. The data is
stored in Hive, and the access parameters and the metadata store provide the
necessary information.

REJECT LIMIT Clause
Limits the number of conversion errors permitted during a query of the external table
before Oracle Database stops the query and returns an error.

Any processing error that causes a row to be rejected counts against the limit. The
reject limit applies individually to each parallel query (PQ) process. It is not the total of
all rejected rows for all PQ processes.

ACCESS PARAMETERS Clause
The ACCESS PARAMETERS clause provides information that the access driver needs to
load the data correctly into the external table. See "CREATE TABLE ACCESS
PARAMETERS Clause" on page 7-5.

About Data Type Conversions
When the access driver loads data into an external table, it verifies that the Hive data
can be converted to the data type of the target column. If they are incompatible, then
the access driver returns an error. Otherwise, it makes the appropriate data
conversion.

Hive typically provides a table abstraction layer over data stored elsewhere, such as in
HDFS files. Hive uses a serializer/deserializer (SerDe) to convert the data as needed
from its stored format into a Hive data type. The access driver then converts the data
from its Hive data type to an Oracle data type. For example, if a Hive table over a text
file has a BIGINT column, then the SerDe converts the data from text to BIGINT. The
access driver then converts the data from BIGINT (a Hive data type) to NUMBER (an
Oracle data type).

Performance is better when one data type conversion is performed instead of two. The
data types for the fields in the HDFS files should therefore indicate the data that is
actually stored on disk. For example, JSON is a clear text format, therefore all data in a
JSON file is text. If the Hive type for a field is DATE, then the SerDe converts the data
from string (in the data file) to a Hive date. Then the access driver converts the data
from a Hive date to an Oracle date. However, if the Hive type for the field is string,
then the SerDe does not perform a conversion, and the access driver converts the data

[a-b] Matches one character in the range {a...b}. The character must be less than
or equal to b.

[^a] Matches one character that is not in the character set or range {a}. The
carat (^) must immediately follow the left bracket, with no spaces.

\c Removes any special meaning of c. The backslash is the escape character.

{ab\,cd} Matches a string from the set {ab, cd}. The escape character (\) removes
the meaning of the comma as a path separator.

{ab\,c{de\,fh} Matches a string from the set {ab, cde, cfh}. The escape character (\)
removes the meaning of the comma as a path separator.

Table 6–2 (Cont.) Pattern-Matching Characters

Character Description

Querying External Tables

Using Oracle Big Data SQL for Data Access 6-19

from string to an oracle date. Queries against the external table are faster in the second
example, because the access driver performs the only data conversion.

Table 6–3 identifies the data type conversions that ORACLE_HIVE can make when
loading data into an external table.

Table 6–3 Supported Hive to Oracle Data Type Conversions

Hive Data Type

VARCHAR2,
CHAR,
NCHAR2,
NCHAR,
CLOB

NUMBER,
FLOAT,
BINARY_
NUMBER,
BINARY_FLOAT BLOB RAW

DATE,
TIMESTAMP,
TIMESTAMP WITH
TZ, TIMESTAMP
WITH LOCAL TZ

INTERVAL
YEAR TO
MONTH,
INTERVAL
DAY TO
SECOND

INT

SMALLINT

TINYINT

BIGINT

yes yes yes yes no no

DOUBLE

FLOAT

yes yes yes yes no no

DECIMAL yes yes no no no no

BOOLEAN yes1

1 FALSE maps to the string FALSE, and TRUE maps to the string TRUE.

yes2

2 FALSE maps to 0, and TRUE maps to 1.

yes2 yes no no

BINARY yes no yes yes no no

STRING yes yes yes yes yes yes

TIMESTAMP yes no no no yes no

STRUCT

ARRAY

UNIONTYPE

MAP

yes no no no no no

Querying External Tables
Users can query external tables using the SQL SELECT statement, the same as they
query any other table.

Granting User Access
Users who query the data on a Hadoop cluster must have READ access in Oracle
Database to the external table and to the database directory object that points to the
cluster directory. See "About the Cluster Directory" on page 6-23.

About Error Handling
By default, a query returns no data if an error occurs while the value of a column is
calculated. Processing continues after most errors, particularly those thrown while the
column values are calculated.

Use the com.oracle.bigdata.erroropt parameter to determine how errors are
handled.

About Oracle Big Data SQL on Oracle Exadata Database Machine

6-20 Oracle Big Data Appliance Software User's Guide

About the Log Files
You can use these access parameters to customize the log files:

■ com.oracle.bigdata.log.exec

■ com.oracle.bigdata.log.qc

About Oracle Big Data SQL on Oracle Exadata Database Machine
Oracle Big Data SQL runs exclusively on systems with Oracle Big Data Appliance
connected to Oracle Exadata Database Machine. The Oracle Exadata Storage Server
Software is deployed on a configurable number of Oracle Big Data Appliance servers.
These servers combine the functionality of a CDH node and an Oracle Exadata Storage
Server.

The Mammoth utility installs the Big Data SQL software on both Oracle Big Data
Appliance and Oracle Exadata Database Machine. The information in this section
explains the changes that Mammoth makes to the Oracle Database system.

This section contains the following topics:

■ Starting and Stopping the Big Data SQL Agent

■ About the Common Directory

■ Common Configuration Properties

■ About the Cluster Directory

Note: Oracle SQL Connector for HDFS provides access to Hadoop
data for all Oracle Big Data Appliance racks, including those that are
not connected to Oracle Exadata Database Machine. However, it does
not offer the performance benefits of Oracle Big Data SQL, and it is
not included under the Oracle Big Data Appliance license. See Oracle
Big Data Connectors User's Guide.

Starting and Stopping the Big Data SQL Agent
The agtctl utility starts and stops the multithreaded Big Data SQL agent. It has the
following syntax:

agtctl {startup | shutdown} bds_clustername

About the Common Directory
The common directory contains configuration information that is common to all
Hadoop clusters. This directory is located on the Oracle Database system under the
Oracle home directory. The oracle file system user (or whichever user owns the
Oracle Database instance) owns the common directory. A database directory named
ORACLE_BIGDATA_CONFIG points to the common directory.

Common Configuration Properties
The Mammoth installation process creates the following files and stores them in the
common directory:

■ bigdata.properties

■ bigdata-log4j.properties

About Oracle Big Data SQL on Oracle Exadata Database Machine

Using Oracle Big Data SQL for Data Access 6-21

The Oracle DBA can edit these configuration files as necessary.

bigdata.properties
Thebigdata.properties file in the common directory contains property-value pairs
that define the Java class paths and native library paths required for accessing data in
HDFS.

These properties must be set:

■ bigdata.cluster.default

■ java.classpath.hadoop

■ java.classpath.hive

■ java.classpath.oracle

The following list describes all properties permitted in bigdata.properties.

bigdata.properties

bigdata.cluster.default
The name of the default Hadoop cluster. The access driver uses this name when the
access parameters do not specify a cluster. Required.

Changing the default cluster name might break external tables that were created
previously without an explicit cluster name.

bigdata.cluster.list
A comma-separated list of Hadoop cluster names. Optional.

java.classpath.hadoop
The Hadoop class path. Required.

java.classpath.hive
The Hive class path. Required.

java.classpath.oracle
The path to the Oracle JXAD Java JAR file. Required.

java.classpath.user
The path to user JAR files. Optional.

java.libjvm.file
The full file path to the JVM shared library (such as libjvm.so). Required.

java.options
A comma-separated list of options to pass to the JVM. Optional.

This example sets the maximum heap size to 2 GB, and verbose logging for Java
Native Interface (JNI) calls:

Xmx2048m,-verbose=jni

LD_LIBRARY_PATH
A colon separated (:) list of directory paths to search for the Hadoop native libraries.
Recommended.

If you set this option, then do not set java.library path in java.options.

Example 6–1 shows a sample bigdata.properties file.

About Oracle Big Data SQL on Oracle Exadata Database Machine

6-22 Oracle Big Data Appliance Software User's Guide

Example 6–1 Sample bigdata.properties File

bigdata.properties
#
Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
#
NAME
bigdata.properties - Big Data Properties File
#
DESCRIPTION
Properties file containing parameters for allowing access to Big Data
Fixed value properties can be added here
#

java.libjvm.file=$ORACLE_HOME/jdk/jre/lib/amd64/server/libjvm.so
java.classpath.oracle=$ORACLE_HOME/hadoopcore/jlib/*:$ORACLE_
HOME/hadoop/jlib/hver-2/*:$ORACLE_HOME/dbjava/lib/*
java.classpath.hadoop=$HADOOP_HOME/*:$HADOOP_HOME/lib/*
java.classpath.hive=$HIVE_HOME/lib/*
LD_LIBRARY_PATH=$ORACLE_HOME/jdk/jre/lib
bigdata.cluster.default=hadoop_cl_1

bigdata-log4j.properties
The bigdata-log4j.properties file in the common directory defines the logging
behavior of queries against external tables in the Java code. Any log4j properties are
allowed in this file.

Example 6–2 shows a sample bigdata-log4j.properties file with the relevant log4j
properties.

Example 6–2 Sample bigdata-log4j.properties File

bigdata-log4j.properties
#
Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
#
NAME
bigdata-log4j.properties - Big Data Logging Properties File
#
DESCRIPTION
Properties file containing logging parameters for Big Data
Fixed value properties can be added here

bigsql.rootlogger=INFO,console
log4j.rootlogger=DEBUG, file
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{2}:
%m%n
log4j.appender.file=org.apache.log4j.RollingFileAppender
log4j.appender.file.layout=org.apache.log4j.PatternLayout
log4j.appender.file.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{2}: %m%n
log4j.logger.oracle.hadoop.sql=ALL, file

bigsql.log.dir=.
bigsql.log.file=bigsql.log
log4j.appender.file.File=$ORACLE_HOME/bigdatalogs/bigdata-log4j.log

See Also: Apache Logging Services documentation at

http://logging.apache.org/log4j/1.2/manual.html

About Oracle Big Data SQL on Oracle Exadata Database Machine

Using Oracle Big Data SQL for Data Access 6-23

About the Cluster Directory
The cluster directory contains configuration information for a CDH cluster. Each
cluster that Oracle Database will access using Oracle Big Data SQL has a cluster
directory. This directory is located on the Oracle Database system under the common
directory. For example, a cluster named bda1_cl_1 would have a directory by the same
name (bda1_cl_1) in the common directory.

The cluster directory contains the CDH client configuration files for accessing the
cluster, such as the following:

■ core-site.xml

■ hdfs-site.xml

■ hive-site.xml

■ mapred-site.xml (optional)

■ log4j property files (such as hive-log4j.properties)

A database directory object points to the cluster directory. Users who want to access
the data in a cluster must have read access to the directory object.

See Also: "Providing Remote Client Access to CDH" on page 3-2 for
a more detailed discussion of Hadoop clients.

About Permissions
The oracle operating system user (or whatever user owns the Oracle Database
installation directory) must have the following setup:

■ READ/WRITE access to the database directory that points to the log directory.
These permissions enable the access driver to create the log files, and for the user
to read them.

■ A corresponding oracle operating system user defined on Oracle Big Data
Appliance, with READ access in the operating system to the HDFS directory
where the source data is stored.

About Oracle Big Data SQL on Oracle Exadata Database Machine

6-24 Oracle Big Data Appliance Software User's Guide

7

Oracle Big Data SQL Reference 7-1

7Oracle Big Data SQL Reference

[2] This chapter contains reference information for Oracle Big Data SQL:

■ DBMS_HADOOP PL/SQL Package

■ CREATE TABLE ACCESS PARAMETERS Clause

■ Static Data Dictionary Views for Hive

DBMS_HADOOP PL/SQL Package

7-2 Oracle Big Data Appliance Software User's Guide

DBMS_HADOOP PL/SQL Package

The DBMS_HADOOP package contains a function to generate the CREATE EXTERNAL TABLE
DDL for a Hive table:

■ CREATE_EXTDDL_FOR_HIVE

DBMS_HADOOP PL/SQL Package

Oracle Big Data SQL Reference 7-3

CREATE_EXTDDL_FOR_HIVE

This function returns a SQL CREATE TABLE ORGANIZATION EXTERNAL statement for a
Hive table. It uses the ORACLE_HIVE access driver.

7Syntax
DBMS_HADOOP.CREATE_EXTDDL_FOR_HIVE (
 cluster_id IN VARCHAR2,
 db_name IN VARCHAR2 := NULL,
 hive_table_name IN VARCHAR2,
 hive_partition IN BOOLEAN,
 table_name IN VARCHAR2 := NULL,
 perform_ddl IN BOOLEAN DEFAULT FALSE,
 text_of_ddl OUT VARCHAR2
);

7Parameters

Table 7–1 CREATE_EXTDDL_FOR_HIVE Function Parameters

Parameter Description

cluster_id Hadoop cluster where the Hive metastore is located

db_name Name of the Hive database

hive_table_name Name of the Hive table

hive_partition Whether the table is partitioned (TRUE) or not (FALSE)

table_name Name of the Oracle external table to be created. It cannot already
exist.

perform_ddl Whether to execute the generated CREATE TABLE statement
(TRUE) or just return the text of the command (FALSE).

Do not execute the command automatically if you want to
review or modify it.

text_of_ddl The generated CREATE TABLE ORGANIZATION EXTERNAL
statement.

7Usage Notes
The Oracle Database system must be configured for Oracle Big Data SQL. See "About
Oracle Big Data SQL on Oracle Exadata Database Machine" on page 6-20.

The data type conversions are based on the default mappings between Hive data types
and Oracle data types. See "About Data Type Conversions" on page 6-18.

Example
The following query returns the CREATE EXTERNAL TABLE DDL for my_hive_table
from the default Hive database. The connection to Hive is established using the
configuration files in the ORACLE_BIGDATA_CONFIG directory, which identify the
location of the HADOOP1 cluster.

DECLARE
 DDLtxt VARCHAR2(4000);
BEGIN
 dbms_hadoop.create_extddl_for_hive(
 CLUSTER_ID=>'hadoop1',

CREATE_EXTDDL_FOR_HIVE

7-4 Oracle Big Data Appliance Software User's Guide

 DB_NAME=>'default',
 HIVE_TABLE_NAME=>'my_hive_table',
 HIVE_PARTITION=>FALSE,
 TABLE_NAME=>'my_xt_oracle',
 PERFORM_DDL=>FALSE,
 TEXT_OF_DDL=>DDLtxt
);
 dbms_output.put_line(DDLtxt);
END;
/

The query returns the text of the following SQL command:

CREATE TABLE my_xt_oracle
(
 c0 VARCHAR2(4000),
 c1 VARCHAR2(4000),
 c2 VARCHAR2(4000),
 c3 VARCHAR2(4000))
 ORGANIZATION EXTERNAL
 (TYPE ORACLE_HIVE
 DEFAULT DIRECTORY DEFAULT_DIR
 ACCESS PARAMETERS (
 com.oracle.bigdata.cluster=hadoop1
 com.oracle.bigdata.tablename=default.my_hive_table
)
)
PARALLEL 2 REJECT LIMIT UNLIMITED

CREATE TABLE ACCESS PARAMETERS Clause

Oracle Big Data SQL Reference 7-5

CREATE TABLE ACCESS PARAMETERS Clause

This section describes the properties that you use when creating an external table that
uses the ORACLE_HDFS or ORACLE_HIVE access drivers. In a CREATE TABLE ORGANIZATION
EXTERNAL statement, specify the parameters in the opaque_format_spec clause of
ACCESS PARAMETERS.

This section contains the following topics:

■ Syntax Rules for Specifying Properties

■ ORACLE_HDFS Access Parameters

■ ORACLE_HIVE Access Parameters

■ Alphabetical list of properties

Syntax Rules for Specifying Properties

7-6 Oracle Big Data Appliance Software User's Guide

Syntax Rules for Specifying Properties

The properties are set using keyword-value pairs in the SQL CREATE TABLE ACCESS
PARAMETERS clause and in the configuration files. The syntax must obey these rules:

■ The format of each keyword-value pair is a keyword, a colon or equal sign, and a
value. The following are valid keyword-value pairs:

keyword=value
keyword:value

The value is everything from the first non-whitespace character after the separator
to the end of the line. Whitespace between the separator and the value is ignored.
Trailing whitespace for the value is retained.

■ A property definition can be on one line or multiple lines.

■ A line terminator is a line feed, a carriage return, or a carriage return followed by
line feeds.

■ When a property definition spans multiple lines, then precede the line terminators
with a backslash (escape character), except on the last line. In this example, the
value of the Keyword1 property is Value part 1 Value part 2 Value part 3.

Keyword1= Value part 1 \
 Value part 2 \
 Value part 3

■ You can create a logical line by stripping each physical line of leading whitespace
and concatenating the lines. The parser extracts the property names and values
from the logical line.

■ You can embed special characters in a property name or property value by
preceding a character with a backslash (escape character), indicating the
substitution. Table 7–2 describes the special characters.

Table 7–2 Special Characters in Properties

Escape Sequence Character

\b Backspace (\u0008)

\t Horizontal tab (\u0009)

\n Line feed (\u000a)

\f Form feed (\u000c)

\r Carriage return (\u000d)

\" Double quote (\u0022)

\' Single quote (\u0027)

\\ Backslash (\u005c)

When multiple backslashes are at the end of the line, the parser
continues the value to the next line only for an odd number of
backslashes.

\uxxxx 2-byte, big-endian, Unicode code point.

When a character requires two code points (4 bytes), the parser expects
\u for the second code point.

CREATE TABLE ACCESS PARAMETERS Clause

Oracle Big Data SQL Reference 7-7

ORACLE_HDFS Access Parameters

The access parameters for theORACLE_HDFS access driver provide the metadata needed
to locate the data in HDFS and generate a Hive table over it.

Default Parameter Settings for ORACLE_HDFS
If you omit all access parameters from the CREATE TABLE statement, then ORACLE_HDFS
uses the following default values:

com.oracle.bigdata.rowformat=DELIMITED
com.oracle.bigdata.fileformat=TEXTFILE
com.oracle.bigdata.overflow={"action":"truncate"}
com.oracle.bigdata.erroropt={"action":"setnull"}

Optional Parameter Settings for ORACLE_HDFS
ORACLE_HDFS supports the following optional com.oracle.bigdata parameters, which
you can specify in the opaque_format_spec clause:

■ com.oracle.bigdata.colmap

■ com.oracle.bigdata.erroropt

■ com.oracle.bigdata.fields

■ com.oracle.bigdata.fileformat

■ com.oracle.bigdata.log.exec

■ com.oracle.bigdata.log.qc

■ com.oracle.bigdata.overflow

■ com.oracle.bigdata.rowformat

Example 7–1 shows a CREATE TABLE statement in which multiple access parameters are
set.

Example 7–1 Setting Multiple Access Parameters for ORACLE_HDFS

CREATE TABLE ORDER (CUST_NUM VARCHAR2(10),
 ORDER_NUM VARCHAR2(20),
 ORDER_DATE DATE,
 ITEM_CNT NUMBER,
 DESCRIPTION VARCHAR2(100),
 ORDER_TOTAL (NUMBER8,2)) ORGANIZATION EXTERNAL
 (TYPE ORACLE_HDFS
 ACCESS PARAMETERS (
 com.oracle.bigdata.fields: (CUST_NUM, \
 ORDER_NUM, \
 ORDER_DATE, \
 ORDER_LINE_ITEM_COUNT, \
 DESCRIPTION, \
 ORDER_TOTAL)
 com.oracle.bigdata.colMap: {"col":"item_cnt", \
 "field":"order_line_item_count"}
 com.oracle.bigdata.overflow: {"action":"TRUNCATE", \
 "col":"DESCRIPTION"}
 com.oracle.bigdata.errorOpt: [{"action":"replace", \
 "value":"INVALID NUM", \
 "col":["CUST_NUM","ORDER_NUM"]} , \
 {"action":"reject", \

ORACLE_HDFS Access Parameters

7-8 Oracle Big Data Appliance Software User's Guide

 "col":"ORDER_TOTAL}]
)
 LOCATION ("hdfs:/usr/cust/summary/*"));

CREATE TABLE ACCESS PARAMETERS Clause

Oracle Big Data SQL Reference 7-9

ORACLE_HIVE Access Parameters

ORACLE_HIVE retrieves metadata about external data sources from the Hive catalog.
The default mapping of Hive data to columns in the external table are usually
appropriate. However, some circumstances require special parameter settings, or you
might want to override the default values for reasons of your own.

Default Parameter Settings for ORACLE_HIVE
If you omit all access parameters from the CREATE TABLE statement, then ORACLE_HIVE
uses the following default values:

com.oracle.bigdata.tablename=name of external table
com.oracle.bigdata.overflow={"action":"truncate"}
com.oracle.bigdata.erroropt={"action":"setnull"}

Optional Parameter Values for ORACLE_HIVE
ORACLE_HIVE supports the following optional com.oracle.bigdata parameters, which
you can specify in the opaque_format_spec clause:

■ com.oracle.bigdata.colmap

■ com.oracle.bigdata.erroropt

■ com.oracle.bigdata.log.exec

■ com.oracle.bigdata.log.qc

■ com.oracle.bigdata.overflow

■ com.oracle.bigdata.tablename

Example 7–2 shows a CREATE TABLE statement in which multiple access parameters are
set.

Example 7–2 Setting Multiple Access Parameters for ORACLE_HIVE

CREATE TABLE ORDER (cust_num VARCHAR2(10),
 order_num VARCHAR2(20),
 order_date DATE,
 item_cnt NUMBER,
 description VARCHAR2(100),
 order_total (NUMBER8,2)) ORGANIZATION EXTERNAL
(TYPE oracle_hive
 ACCESS PARAMETERS (
 com.oracle.bigdata.tableName: order_db.order_summary
 com.oracle.bigdata.colMap: {"col":"ITEM_CNT", \
 "field":"order_line_item_count"}
 com.oracle.bigdata.overflow: {"action":"ERROR", \
 "col":"DESCRIPTION"}
 com.oracle.bigdata.errorOpt: [{"action":"replace", \
 "value":"INV_NUM" , \
 "col":["CUST_NUM","ORDER_NUM"]} ,\
 {"action":"reject", \
 "col":"ORDER_TOTAL}]
));

com.oracle.bigdata.colmap

7-10 Oracle Big Data Appliance Software User's Guide

com.oracle.bigdata.colmap

Maps a column in the source data to a column in the Oracle external table. Use this
property when the source field names exceed the maximum length of Oracle column
names, or when you want to use different column names in the external table.

7Default Value
A column in the external table with the same name as the Hive column

7Syntax
A JSON document with the keyword-value pairs is shown in the following diagram:

colmap ::=

com.oracle.bigdata.colmap
=

:

colmap_entry

[colmap_entry

,

]

colmap_entry ::=

{ "col" : name , "field" : name }

7Semantics

"col":name
"col": The keyword must be lowercase and enclosed in quotation marks.

name: The name of a column in the Oracle external table. It is case sensitive and must
be enclosed in quotation marks.

"field":name
"field": The keyword must be lowercase and enclosed in quotation marks.

name: The name of a field in the data source. It is not case sensitive, but it must be
enclosed in quotation marks. See "Syntax Rules for Specifying Properties" on page 7-6.

7Example
This example maps a Hive column named ORDER_LINE_ITEM_COUNT to an Oracle
column named ITEM_CNT:

com.oracle.bigdata.colMap={"col":"ITEM_CNT", \
 "field":"order_line_item_count"}

CREATE TABLE ACCESS PARAMETERS Clause

Oracle Big Data SQL Reference 7-11

com.oracle.bigdata.datamode

Specifies the method that SmartScan uses to scan a Hadoop data source. The method
can make a significant difference in performance.

7Default Value
java

7Syntax
A JSON document with the keyword-value pairs shown in the following diagram:

datamode ::=

com.oracle.bigdata.datamode
=

:

c

java

automatic

7Semantics

automatic
Automatically selects the appropriate mode, based on the metadata. It selects c mode
if possible, or java mode if the data contains formats that are not supported by c
mode.

c
Uses Java to read the file buffers, but C code to process the data and convert it to
Oracle format. Specify this mode for delimited data.

If the data contains formats that the C code does not support, then it returns an error.

java
Uses the Java SerDes and InputFormats to process the data and convert it to Oracle
format. Specify this mode for Parquet, RCFile, and other data formats that require a
SerDe.

com.oracle.bigdata.erroropt

7-12 Oracle Big Data Appliance Software User's Guide

com.oracle.bigdata.erroropt

Describes how to handle errors that occur while the value of a column is calculated.

7Default Value
{"action":"setnull"}

7Syntax
A JSON document with the keyword-value pairs is shown in the following diagram:

erroropt ::=

com.oracle.bigdata.erroropt
=

:

error_element

[error_element

,

]

error_element ::=

{ "action" :

"reject"

"setnull"

"replace" , "value" : string

, "col" :

name

[name

,

]
}

7Semantics
The "action", "reject", "setnull", "replace", "value", and "col" keywords must
be lowercase and enclosed in quotation marks. See "Syntax Rules for Specifying
Properties" on page 7-6.

"action":value
value: One of these keywords:

■ "reject": Does not load any rows.

■ "setnull": Sets the column to NULL.

■ "replace": Sets the column to the specified value.

"value":string
string: Replaces a bad value in the external table. It must be enclosed in quotation
marks.

"col":name
name: Identifies a column in an external table. The column name is case sensitive, must
be enclosed in quotation marks, and can be listed only once.

CREATE TABLE ACCESS PARAMETERS Clause

Oracle Big Data SQL Reference 7-13

7Example
This example sets the value of the CUST_NUM or ORDER_NUM columns to INVALID if the
Hive value causes an error. For any other columns, an error just causes the Hive value
to be rejected.

com.oracle.bigdata.errorOpt: {"action":"replace",\
 "value":"INVALID", \
 "col":["CUST_NUM","ORDER_NUM"]

com.oracle.bigdata.fields

7-14 Oracle Big Data Appliance Software User's Guide

com.oracle.bigdata.fields

Lists the field names and data types of the data source.

7Default Value
Not defined

7Syntax
A JSON document with the keyword-value pairs is shown in the following diagram:

fields ::=

com.oracle.bigdata.fields
=

:
(field_name data_type

COMMENT col_comment

,

)

data_type ::=

primitive_type

ARRAY < data_type >

MAP < primitive_type , data_type >

STRUCT < field_name data_type
COMMENT col_comment

,

>

UNIONTYPE < data_type

,

>

primitive_type ::=

TINYINT

SMALLINT

INT

BIGINT

BOOLEAN

FLOAT

DOUBLE

STRING

BINARY

TIMESTAMP

DECIMAL

CREATE TABLE ACCESS PARAMETERS Clause

Oracle Big Data SQL Reference 7-15

7Semantics
The syntax is the same as a field list for a Hive table. If you split the field list across
multiple lines, you must use a backslash to escape the new line characters.

field_name
The name of the Hive field. Use only alphanumeric characters and underscores (_).
The maximum length is 128 characters. Field names are case-insensitive.

data_type
The data type of the Hive field. Optional; the default is STRING. The character set must
be UTF8.

The data type can be complex or primitive:

Hive Complex Data Types
■ ARRAY: Indexable list

■ MAP: Key-value tuples

■ STRUCT: List of elements

■ UNIONTYPE: Multiple data types

Hive Primitive Data Types
■ INT: 4 byte integer

■ BIGINT: 8 byte integer

■ SMALLINT: 2 byte integer

■ TINYINT: 1 byte integer

■ BOOLEAN: TRUE or FALSE

■ FLOAT: single precision

■ DOUBLE: double precision

■ STRING: character sequence

See Also: "Data Types" in the Apache Hive Language Manual at

https://cwiki.apache.org/confluence/display/Hive/LanguageMan
ual+Types

COMMENT col_comment
A string literal enclosed in single quotation marks, which is stored as metadata for the
Hive table (comment property of TBLPROPERTIES).

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types

com.oracle.bigdata.fileformat

7-16 Oracle Big Data Appliance Software User's Guide

com.oracle.bigdata.fileformat

Describes the row format of the data source, based on the ROW FORMAT clause for a Hive
table generated by ORACLE_HDFS.

7Default Value
TEXTFILE

7Syntax
A JSON document with the keyword-value pairs is shown in the following diagram.

fileformat ::=

com.oracle.bigdata.fileformat
=

:

SEQUENCEFILE

TEXTFILE

RCFILE

ORC

PARQUET

INPUTFORMAT input_class OUTPUTFORMAT output_class

7Semantics

ORC
Optimized row columnar file format

PARQUET
Column-oriented, binary file format

RCFILE
Record columnar file format

SEQUENCEFILE
Compressed file format

TEXTFILE
Plain text file format

INPUTFORMAT
Identifies a Java class that can extract records from the data file.

OUTPUTFORMAT
Identifies a Java class that can format the output records in the desired format.

CREATE TABLE ACCESS PARAMETERS Clause

Oracle Big Data SQL Reference 7-17

com.oracle.bigdata.log.exec

Specifies how the access driver generates log files generated by the C code for a query,
when it is running as parallel processes on CDH.

The access driver does not create or write log files when executing on a Hadoop
cluster node; the parallel query processes write them. The log files from the Java code
are controlled by log4j properties, which are specified in the configuration file or the
access parameters. See "bigdata-log4j.properties" on page 6-22.

7Default Value
Not defined (no logging)

7Syntax
[directory_object:]file_name_template

7Semantics

directory_object
The Oracle directory object for the HDFS path on the Hadoop cluster where the log file
is created.

file_name_template
A string used to generate file names. Table 7–2 describes the optional variables that
you can use in the template.

Table 7–3 Variables for com.oracle.bigdata.log.exec

Variable Value

%p Operating system process identifier (PID)

%a A number that uniquely identifies the process.

%% A percent sign (%)

7Example
The following example generates log file names that include the PID and a unique
number, such as xtlogp_hive14_3413_57:

com.oracle.bigdata.log.exec= xtlogp_hive14_%p_%a

com.oracle.bigdata.log.qc

7-18 Oracle Big Data Appliance Software User's Guide

com.oracle.bigdata.log.qc

Specifies how the access driver generates log files for a query.

7Default Value
Not defined (no logging)

7Syntax
[directory_object:]file_name_template

7Semantics

directory_object
Name of an Oracle directory object that points to the path where the log files are
written. If this value is omitted, then the logs are written to the default directory for
the external table.

file_name_template
A string used to generate file names. Table 7–4 describes the optional variables that
you can use in the string.

Table 7–4 Variables for com.oracle.bigdata.log.qc

Variable Value

%p Operating system process identifier (PID)

%% A percent sign (%)

7Example
This example creates log file names that include the PID and a percent sign, such as
xtlogp_hive213459_%:

com.oracle.bigdata.log.qc= xtlogp_hive21%p_%%

CREATE TABLE ACCESS PARAMETERS Clause

Oracle Big Data SQL Reference 7-19

com.oracle.bigdata.overflow

Describes how to handle string data that is too long for the columns in the external
table. The data source can be character or binary. For Hive, the data source can also be
STRUCT, UNIONTYPES, MAP, or ARRAY.

7Default Value
{"action":"truncate"}

7Syntax
A JSON document with the keyword-value pairs is shown in the following diagram:

overflow ::=

com.oracle.bigdata.overflow
=

:

overflow_element

[overflow_element

,

]

overflow_element ::=

{ "action" :
"truncate"

"error"

, "col" :

name

[name

,

]
}

7Semantics
The "action", "truncate", "error", and "col" tags must be lowercase and enclosed
in quotation marks. See "Syntax Rules for Specifying Properties" on page 7-6.

"action":value
The value of "action" can be one of the following keywords:

■ truncate: Shortens the data to fit the column.

■ error: Throws an error. The com.oracle.bigdata.erroropt property controls the
result of the error.

"col":name
name: Identifies a column in the external table. The name is case sensitive and must be
enclosed in quotation marks.

7Example
This example truncates the source data for the DESCRIPTION column, if it exceeds the
column width:

com.oracle.bigdata.overflow={"action":"truncate", \
 "col":"DESCRIPTION"}

com.oracle.bigdata.rowformat

7-20 Oracle Big Data Appliance Software User's Guide

com.oracle.bigdata.rowformat

Provides the information the access driver needs to extract fields from the records in a
file.

7Default Value
DELIMITED

7Syntax
A JSON document with the keyword-value pairs is shown in the following diagram.

rowformat ::=

DELIMITED

FIELDS TERMINATED BY char
ESCAPED BY char

COLLECTION ITEMS TERMINATED BY char

MAP KEYS TERMINATED BY char

LINES TERMINATED BY char

NULL DEFINED AS char

SERDE serde_name
WITH SERDEPROPERTIES (prop_list)

7Semantics

DELIMITED
Describes the characters used to delimit the fields in a record:

■ FIELDS TERMINATED BY: The character that delimits every field in the record. The
optional ESCAPED BY character precedes the delimit character when it appears
within a field value.

■ COLLECTION ITEMS TERMINATED BY: The character that marks the end of an array
element.

■ MAP KEYS TERMINATED BY: The character that marks the end of an entry in a MAP
field.

■ LINES TERMINATED BY: The character that marks the end of a record.

■ NULL DEFINED AS: The character that indicates a null value.

SERDE
Identifies a SerDe that can parse the data and any properties of the SerDe that the
access driver might need.

7Example
This example specifies a SerDe for an Avro container file:

com.oracle.bigdata.rowformat:

CREATE TABLE ACCESS PARAMETERS Clause

Oracle Big Data SQL Reference 7-21

 SERDE'org.apache.hadoop.hive.serde2.avro.AvroSerDe'

The next example specifies a SerDe for a file containing regular expressions:

com.oracle.bigdata.rowformat=\
 SERDE 'org.apache.hadoop.hive.contrib.serde2.RegexSerDe' \
 WITH SERDEPROPERTIES \
 ("input.regex" = "(\\\\d{6}) (\\\\d{5}) (.{29}) .*")

com.oracle.bigdata.tablename

7-22 Oracle Big Data Appliance Software User's Guide

com.oracle.bigdata.tablename

Identifies the Hive table that contains the source data.

7Default Value
DEFAULT.external_table_name

7Syntax
[hive_database_name.]table_name

7Semantics
The maximum length of hive_database_name and table_name is 128 UTF-8 characters
(512 bytes).

hive_database_name
The Hive database where the source data resides. DEFAULT is the name of the initial
Hive database.

table_name
The Hive table with the data. If you omit table_name, then ORACLE_HIVE searches for a
Hive table with the same name as the external table. Table names are case-insensitive.

7Example
This setting indicates that the source data is in a table named ORDER_SUMMARY in the
Hive ORDER_DB database:

com.oracle.bigdata.tablename ORDER_DB.ORDER_SUMMARY

Static Data Dictionary Views for Hive

Oracle Big Data SQL Reference 7-23

Static Data Dictionary Views for Hive

The Oracle Database catalog contains several static data dictionary views for Hive
tables. You can query these data dictionary views to discover information about the
Hive tables that you can access.

For you to access any Hive databases from Oracle Database, you must have read
privileges on the ORACLE_BIGDATA_CONFIG directory object.

■ ALL_HIVE_DATABASES

■ ALL_HIVE_TABLES

■ ALL_HIVE_COLUMNS

■ DBA_HIVE_DATABASES

■ DBA_HIVE_TABLES

■ DBA_HIVE_COLUMNS

■ USER_HIVE_DATABASES

■ USER_HIVE_TABLES

■ USER_HIVE_COLUMNS

ALL_HIVE_DATABASES

7-24 Oracle Big Data Appliance Software User's Guide

ALL_HIVE_DATABASES

ALL_HIVE_DATABASES describes all databases in the Hive metastore accessible to the
current user.

Related Views
■ DBA_HIVE_DATABASES describes all the databases in the Hive metastore.

■ USER_HIVE_DATABASES describes the databases in the Hive metastore owned by the
current user.

Column Datatype NULL Description

CLUSTER_ID VARCHAR2(4000) NOT NULL Hadoop cluster where the Hive metastore is located

DATABASE_NAME VARCHAR2(4000) NOT NULL Hive database name

DESCRIPTION VARCHAR2(4000) Hive database description

DB_LOCATION VARCHAR2(4000) NOT NULL

HIVE_URI VARCHAR2(4000) Hive database URI

See Also:

■ "DBA_HIVE_DATABASES" on page 7-27

■ "USER_HIVE_DATABASES" on page 7-30

Static Data Dictionary Views for Hive

Oracle Big Data SQL Reference 7-25

ALL_HIVE_TABLES

ALL_HIVE_TABLES describes all tables in the Hive metastore accessible to the current
user.

The Oracle Big Data SQL configuration must identify the default Hive database for the
current user. The current user must also have READ privileges on the ORA_BIGSQL_
CONFIG database directory. See "About the Common Directory" on page 6-20.

Related Views
■ DBA_HIVE_TABLES describes all tables in the Hive metastore.

■ USER_HIVE_TABLES describes the tables in the database owned by the current user
in the Hive metastore.

Column Datatype NULL Description

CLUSTER_ID VARCHAR2(4000) NOT NULL Hadoop cluster where the Hive metastore is located

DATABASE_NAME VARCHAR2(4000) NOT NULL Name of the Hive database

TABLE_NAME VARCHAR2(4000) NOT NULL Name of the Hive table

LOCATION VARCHAR2(4000)

NO_OF_COLS NUMBER Number of columns in the Hive table

CREATION_TIME DATE Time when the table was created

LAST_ACCESSED_TIME DATE Time of most recent access

OWNER VARCHAR2(4000) Owner of the Hive table

TABLE_TYPE VARCHAR2(4000) NOT NULL Type of Hive table, such as external or managed

PARTITIONED VARCHAR2(4000) Whether the table is partitioned (YES) or not (NO)

NO_OF_PART_KEYS NUMBER Number of partitions

INPUT_FORMAT VARCHAR2(4000) Input format

OUTPUT_FORMAT VARCHAR2(4000) Output format

SERIALIZATION VARCHAR2(4000) SerDe serialization information

COMPRESSED NUMBER Whether the table is compressed (YES) or not (NO)

HIVE_URI VARCHAR2(4000) Hive database URI

See Also:

■ "DBA_HIVE_TABLES" on page 7-28

■ "USER_HIVE_TABLES" on page 7-31

ALL_HIVE_COLUMNS

7-26 Oracle Big Data Appliance Software User's Guide

ALL_HIVE_COLUMNS

ALL_HIVE_COLUMNS describes the columns of all Hive tables accessible to the current
user.

The Oracle Big Data SQL configuration must identify the default Hive database for the
current user. The current user must also have READ privileges on the ORA_BIGSQL_
CONFIG database directory. See "About the Common Directory" on page 6-20.

Related Views
■ DBA_HIVE_COLUMNS describes the columns of all tables in the Hive metastore.

■ USER_HIVE_COLUMNS describes the columns of the tables in the Hive database
owned by the current user.

Column Datatype NULL Description

CLUSTER_ID VARCHAR2(4000) NOT NULL Hadoop cluster where the Hive metastore is located

DATABASE_NAME VARCHAR2(4000) NOT NULL Name of the Hive database; if blank, then the default database

TABLE_NAME VARCHAR2(4000) NOT NULL Name of the Hive table

COLUMN_NAME VARCHAR2(4000) NOT NULL Name of the Hive column

HIVE_COLUMN_TYPE VARCHAR2(4000) NOT NULL Data type of the Hive column

ORACLE_COLUMN_TYPE VARCHAR2(4000) NOT NULL Oracle data type equivalent to Hive data type

LOCATION VARCHAR2(4000)

OWNER VARCHAR2(4000) Owner of the Hive table

CREATION_TIME DATE Time when the table was created

HIVE_URI VARCHAR2(4000) Hive database URI

See Also:

■ "DBA_HIVE_COLUMNS" on page 7-29

■ "USER_HIVE_COLUMNS" on page 7-32

Static Data Dictionary Views for Hive

Oracle Big Data SQL Reference 7-27

DBA_HIVE_DATABASES

DBA_HIVE_DATABASES describes all the databases in the Hive metastore. Its columns are
the same as those in ALL_HIVE_DATABASES.

See Also: "ALL_HIVE_DATABASES" on page 7-24

DBA_HIVE_TABLES

7-28 Oracle Big Data Appliance Software User's Guide

DBA_HIVE_TABLES

DBA_HIVE_TABLES describes all tables in the Hive metastore. Its columns are the same
as those in ALL_HIVE_TABLES.

The Oracle Big Data SQL configuration must identify the default Hive database for the
current user. See "About the Common Directory" on page 6-20.

See Also: "ALL_HIVE_TABLES" on page 7-25

Static Data Dictionary Views for Hive

Oracle Big Data SQL Reference 7-29

DBA_HIVE_COLUMNS

DBA_HIVE_COLUMNS describes the columns of all tables in the Hive metastore. Its
columns are the same as those in ALL_HIVE_COLUMNS.

See Also: "ALL_HIVE_COLUMNS" on page 7-26

USER_HIVE_DATABASES

7-30 Oracle Big Data Appliance Software User's Guide

USER_HIVE_DATABASES

USER_HIVE_DATABASES describes the databases in the Hive metastore owned by the
current user. Its columns (except for OWNER) are the same as those in ALL_HIVE_
DATABASES.

See Also: "ALL_HIVE_DATABASES" on page 7-24

Static Data Dictionary Views for Hive

Oracle Big Data SQL Reference 7-31

USER_HIVE_TABLES

USER_HIVE_TABLES describes the tables in the database owned by the current user in
the Hive metastore. Its columns (except for OWNER) are the same as those in ALL_HIVE_
TABLES.

The Oracle Big Data SQL configuration must identify the default Hive database for the
current user. The current user must also have READ privileges on the ORA_BIGSQL_
CONFIG database directory. See "About the Common Directory" on page 6-20.

See Also: "ALL_HIVE_TABLES" on page 7-25

USER_HIVE_COLUMNS

7-32 Oracle Big Data Appliance Software User's Guide

USER_HIVE_COLUMNS

USER_HIVE_COLUMNS describes the columns of the tables in the Hive database owned by
the current user. Its columns (except for OWNER) are the same as those in ALL_HIVE_
COLUMNS.

The Oracle Big Data SQL configuration must identify the default Hive database for the
current user. The current user must also have READ privileges on the ORA_BIGSQL_
CONFIG database directory. See "About the Common Directory" on page 6-20.

See Also: "ALL_HIVE_COLUMNS" on page 7-26

8

Copying Oracle Tables to Hadoop 8-1

8Copying Oracle Tables to Hadoop

[3] This chapter describes how to use Copy to BDA to copy tables in an Oracle database to
Hadoop. It contains the following sections:

■ What Is Copy to BDA?

■ Getting Started Using Copy to BDA

■ Installing Copy to BDA

■ Generating the Data Pump Files

■ Creating a Hive Table

■ Example Using the Sample Schemas

What Is Copy to BDA?
Copy to BDA enables you to copy tables from an Oracle database into Hadoop. After
generating Data Pump format files from the tables and copying the files to HDFS, you
can use Apache Hive to query the data. Hive can process the data locally without
accessing Oracle Database. When the Oracle table changes, you can refresh the copy in
Hadoop. Copy to BDA is primarily useful for Oracle tables that are relatively static,
and thus do not require frequent refreshes.

Copy to BDA is licensed under Oracle Big Data SQL. You must have an Oracle Big
Data SQL license to use Copy to BDA.

Getting Started Using Copy to BDA
Take the following steps to use Copy to BDA:

1. Ensure that your system meets the prerequisites, and that the required software is
installed on Oracle Big Data Appliance and Oracle Exadata Database Machine.

See "Installing Copy to BDA" on page 8-2.

2. On Oracle Exadata Database Machine, connect to Oracle Database and generate
Data Pump format files containing the table data and metadata.

See "Generating the Data Pump Files" on page 8-2.

3. Copy the files to HDFS on Oracle Big Data Appliance.

See "Copying the Files to HDFS" on page 8-4.

4. Connect to Apache Hive and create an external table from the files.

See "Creating a Hive Table" on page 8-4.

Installing Copy to BDA

8-2 Oracle Big Data Appliance Software User's Guide

5. Query this Hive table the same as you would any other Hive table.

Installing Copy to BDA
Copy to BDA is available only on Oracle Exadata Database Machine connected to
Oracle Big Data Appliance.

Prerequisites for Copy to BDA
Oracle Exadata Database Machine must comply with the following requirements:

■ Configured on the same InfiniBand or client network as Oracle Big Data
Appliance. Oracle recommends an InfiniBand connection between Oracle Exadata
Database Machine and Oracle Big Data Appliance, but it is not required.

■ Runs Oracle Database 11.2 or later.

Copy to BDA supports earlier releases than Oracle Big Data SQL.

Installing Copy to BDA on Oracle Big Data Appliance
Copy to BDA is a component of Oracle Big Data SQL, which is an installation option
on Oracle Big Data Appliance. You can enable Oracle Big Data SQL either during the
initial software installation or at a later time using the standard methods for enabling
and disabling services. See "Performing the Installation" on page 6-3.

Installing Copy to BDA on Oracle Exadata Database Machine
Copy to BDA only requires a Hadoop client on Oracle Exadata Database Machine. It
does not employ the additional software required by Oracle Big Data SQL.

If you plan to use Oracle Big Data SQL also, then the Hadoop client is created
automatically when you run the bds-exa-install.sh installation script. You do not
need to take any additional steps. See "Running the Post-Installation Script for Oracle
Big Data SQL" on page 6-4.

If you do not plan to use Oracle Big Data SQL at this time, then you can install the
Hadoop client manually instead of running the script. For example, Oracle Big Data
SQL might not be supported with the version of Oracle Database you are using. Or
you might want to avoid installing a database patch and other software that you do
not currently need. See "Providing Remote Client Access to CDH" on page 3-2.

Generating the Data Pump Files
The SQL CREATE TABLE statement has a clause specifically for creating external tables,
in which you specify the ORACLE_DATAPUMP access driver. The information that you
provide in this clause enables the access driver to generate a Data Pump format file
that contains the data and metadata from the Oracle database table.

This section contains the following topics:

■ About Data Pump Format Files

■ Identifying the Target Directory

■ About the CREATE TABLE Syntax

■ Copying the Files to HDFS

Generating the Data Pump Files

Copying Oracle Tables to Hadoop 8-3

About Data Pump Format Files
Data Pump files are typically used to move data and metadata from one database to
another. Copy to BDA uses this file format to copy data from an Oracle database to
HDFS.

To generate Data Pump format files, you create an external table from an existing
Oracle table. An external table in Oracle Database is an object that identifies and
describes the location of data outside of a database. External tables use access drivers
to parse and format the data. For Copy to BDA, you use the ORACLE_DATAPUMP access
driver. It copies the data and metadata from internal Oracle tables and populates the
Data Pump format files of the external table.

Identifying the Target Directory
You must have read and write access to a database directory in Oracle Database. Only
Oracle Database users with the CREATE ANY DIRECTORY system privilege can create
directories.

This example creates a database directory named EXPORTDIR that points to the
/exportdir directory on Oracle Exadata Database Machine:

SQL> CREATE DIRECTORY exportdir AS '/exportdir';

About the CREATE TABLE Syntax
The following is the basic syntax of the CREATE TABLE statement for Data Pump format
files:

CREATE TABLE table_name
 ORGANIZATION EXTERNAL (
 TYPE oracle_datapump
 DEFAULT DIRECTORY database_directory
 LOCATION ('filename1.dmp','filename2.dmp'...)
) PARALLEL n
 AS SELECT * FROM tablename;

DEFAULT DIRECTORY
Identifies the database directory that you created for this purpose. See "Identifying the
Target Directory" on page 8-3.

LOCATION
Lists the names of the Data Pump files to be created. The number of names should
match the degree of parallelism (DOP) specified by the PARALLEL clause. Otherwise,
the DOP drops to the number of files.

The number of files and the degree of parallelism affect the performance of Oracle
Database when generating the Data Pump format files. They do not affect querying
performance in Hive.

PARALLEL
Sets the degree of parallelism (DOP). Use the maximum number that your Oracle DBA
permits you to use. By default the DOP is 1, which is serial processing. Larger
numbers enable parallel processing.

AS SELECT
Use the full SQL SELECT syntax for this clause. It is not restricted. The tablename
identifies the Oracle table to be copied to HDFS.

See Also: For descriptions of these parameters:

■ Oracle Database SQL Language Reference

■ Oracle Database Utilities

Creating a Hive Table

8-4 Oracle Big Data Appliance Software User's Guide

Copying the Files to HDFS
The Oracle Big Data SQL installation installs Hadoop client files to Oracle Exadata
Database Machine. The Hadoop client installation enables you to use Hadoop
commands to copy the Data Pump files to HDFS. You must have write privileges on
the HDFS directory.

To copy the dmp files into HDFS, use the hadoop fs -put command. This example
copies the files into the HDFS customers directory owned by the oracle user:

$ hadoop fs -put customers*.dmp /user/oracle/customers

Creating a Hive Table
To provide access to the data in the Data Pump files, you create a Hive external table
over the Data Pump files. Copy to BDA provides SerDes that enable Hive to read the
files. These SerDes are read only, so you cannot use them to write to the files.

See Also: Apache Hive Language Manual DDL at

https://cwiki.apache.org/confluence/display/Hive/LanguageMan
ual+DDL#LanguageManualDDL-Create/Drop/TruncateTable

About Hive External Tables
For external tables, Hive loads the table metadata into its metastore. The data remains
in its original location, which you identify in the LOCATION clause. If you drop an
external table using a HiveQL DROP TABLE statement, then only the metadata is
discarded, while the external data remains unchanged. In this respect, Hive handles
external tables in fundamentally the same way as Oracle Database.

External tables support data sources that are shared by multiple programs. In this case,
you use Oracle Database to update the data and then generate a new file. You can
overwrite the old HDFS files with the updated files while leaving the Hive metadata
intact.

The following is the basic syntax of a Hive CREATE TABLE statement for creating a Hive
external table for use with a Data Pump format file:

CREATE EXTERNAL TABLE tablename
ROW FORMAT
 SERDE 'oracle.hadoop.hive.datapump.DPSerDe'
STORED AS
 INPUTFORMAT 'oracle.hadoop.hive.datapump.DPInputFormat'
 OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 'hdfs_directory'

About Column Mappings
The Hive table columns automatically have the same names as the Oracle columns,
which are provided by the metadata stored in the Data Pump files. In this release, any
user-specified column definitions are ignored.

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Create/Drop/TruncateTable
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Create/Drop/TruncateTable

Example Using the Sample Schemas

Copying Oracle Tables to Hadoop 8-5

About Data Type Conversions
Copy to BDA automatically converts the data in an Oracle table to an appropriate
Hive data type. Table 8–1 shows the default mappings between Oracle and Hive data
types.

Table 8–1 Oracle to Hive Data Type Conversions

Oracle Data Type Hive Data Type

NUMBER INT when the scale is 0 and the precision is less than 10

BIGINT when the scale is 0 and the precision is less than 19

DECIMAL when the scale is greater than 0 or the precision is
greater than 19

BINARY_DOUBLE DOUBLE

BINARY_FLOAT FLOAT

CHAR

NCHAR

CHAR

VARCHAR2

NVARCHAR2

VARCHAR

DATE TIMESTAMP

TIMESTAMP TIMESTAMP

TIMESTAMPTZ1

1 To copy TIMESTAMPTZ and TIMESTAMPLTZ data to Hive, cast the columns to TIMESTAMP when exporting
them to the Data Pump files. Hive does not have a data type that supports time zones or time offsets.

TIMESTAMPLTZ

Unsupported

RAW BINARY

Example Using the Sample Schemas
This example shows all steps in the process of creating a Hive table from an Oracle
table using Copy to BDA.

About the Sample Data
The Oracle tables are from the Sales History (SH) sample schema. The CUSTOMERS table
provides extensive information about individual customers, including names,
addresses, telephone numbers, birth dates, and credit limits. The COUNTRIES table
provides a list of countries, and identifies regions and subregions.

This query shows a small selection of data in the CUSTOMERS table:

SELECT cust_first_name first_name,
 cust_last_name last_name,
 cust_gender gender,
 cust_year_of_birth birth
FROM customers
ORDER BY cust_city, last_name
FETCH FIRST 10 ROWS ONLY;

The query returns the following rows:

FIRST_NAME LAST_NAME GENDER BIRTH
--------------- -------------------- ------ ----------

Example Using the Sample Schemas

8-6 Oracle Big Data Appliance Software User's Guide

Lise Abbey F 1963
Lotus Alden M 1958
Emmanuel Aubrey M 1933
Phil Ball M 1956
Valentina Bardwell F 1965
Lolita Barkley F 1966
Heloise Barnes M 1980
Royden Barrett M 1937
Gilbert Braun M 1984
Portia Capp F 1948

To reproduce this example, install the sample schemas in Oracle Database and connect
as the SH user.

See Also: Oracle Database Sample Schemas for descriptions of the
tables and installation instructions for the schemas.

Creating the EXPDIR Database Directory
These SQL statements create a local database directory named EXPDIR and grant access
to the SH user:

SQL> CREATE DIRECTORY expdir AS '/expdir';

Directory created.

SQL> GRANT READ, WRITE ON DIRECTORY expdir TO SH;

Grant succeeded.

Creating Data Pump Format Files for Customer Data
The following examples show how to create the Data Pump files and check their
contents.

CREATE TABLE Example With a Simple SELECT Statement
This example shows a very simple SQL command for creating a Data Pump format file
from the CUSTOMERS table. It selects the entire table and generates a single output file
named customers.dmp in the local /expdir directory.

CREATE TABLE export_customers
 ORGANIZATION EXTERNAL
 (
 TYPE oracle_datapump
 DEFAULT DIRECTORY expdir
 LOCATION('customers.dmp')
)
AS SELECT * FROM customers;

CREATE TABLE Example With a More Complex SQL SELECT Statement
The next example shows more complexity in the syntax. It joins the CUSTOMERS and
COUNTRIES tables on the COUNTRY_ID columns to provide the country names. It also
limits the rows to customers in the Americas. The command generates two output files
in parallel, named americas1.dmp and americas2.dmp, in the local /expdir directory.

CREATE TABLE export_americas
 ORGANIZATION EXTERNAL
 (
 TYPE oracle_datapump

Example Using the Sample Schemas

Copying Oracle Tables to Hadoop 8-7

 DEFAULT DIRECTORY expdir
 LOCATION('americas1.dmp', 'americas2.dmp')
)
 PARALLEL 2
AS SELECT a.cust_first_name first_name,
 a.cust_last_name last_name,
 a.cust_gender gender,
 a.cust_year_of_birth birth,
 a.cust_email email,
 a.cust_postal_code postal_code,
 b.country_name country
FROM customers a,
 countries b
WHERE a.country_id=b.country_id AND
 b.country_region='Americas'
ORDER BY a.country_id, a.cust_postal_code;

Verifying the Contents of the Data Files
You can check the content of the output data files before copying them to Hadoop. The
previous CREATE TABLE statement created an external table named EXPORT_AMERICAS,
which you can describe and query the same as any other table.

The DESCRIBE statement shows the selection of columns and the modified names:

SQL> DESCRIBE export_americas;
 Name Null? Type
 ------------------------- -------- -----------------
 FIRST_NAME NOT NULL VARCHAR2(20)
 LAST_NAME NOT NULL VARCHAR2(40)
 GENDER NOT NULL CHAR(1)
 BIRTH NOT NULL NUMBER(4)
 EMAIL VARCHAR2(50)
 POSTAL_CODE NOT NULL VARCHAR2(10)
 COUNTRY NOT NULL VARCHAR2(40)

A SELECT statement like the following shows a sample of the data:

SELECT first_name, last_name, gender, birth, country
 FROM export_americas
 WHERE birth > 1985
 ORDER BY last_name
 FETCH FIRST 5 ROWS ONLY;

FIRST_NAME LAST_NAME GENDER BIRTH COUNTRY
--------------- -------------------- ------ ---------- ------------------------
Opal Aaron M 1990 United States of America
KaKit Abeles M 1986 United States of America
Mitchel Alambarati M 1987 Canada
Jade Anderson M 1986 United States of America
Roderica Austin M 1986 United States of America

Copying the Files into Hadoop
The following commands list the files in the local expdir directory, create a Hadoop
subdirectory named customers, and copy the files to it. The user is connected to Oracle
Big Data Appliance as the oracle file system user.

$ cd /expdir
$ ls americas*.dmp

Example Using the Sample Schemas

8-8 Oracle Big Data Appliance Software User's Guide

americas1.dmp americas2.dmp
$ hadoop fs -mkdir customers
$ hadoop fs -put *.dmp customers
$ hadoop fs -ls customers
Found 2 items
-rw-r--r-- 1 oracle oracle 798720 2014-10-13 17:04 customers/americas1.dmp
-rw-r--r-- 1 oracle oracle 954368 2014-10-13 17:04 customers/americas2.dmp

Creating a Hive External Table
This HiveQL statement creates an external table using the Copy to BDA SerDes. The
LOCATION clause identifies the full path to the Hadoop directory containing the Data
Pump files:

CREATE EXTERNAL TABLE customers
 ROW FORMAT SERDE 'oracle.hadoop.hive.datapump.DPSerDe'
 STORED AS
 INPUTFORMAT 'oracle.hadoop.hive.datapump.DPInputFormat'
 OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
 LOCATION '/user/oracle/customers';

The DESCRIBE command shows the columns of the CUSTOMERS external table.

hive> DESCRIBE customers;
OK
first_name varchar(20) from deserializer
last_name varchar(40) from deserializer
gender char(1) from deserializer
birth int from deserializer
email varchar(50) from deserializer
postal_code varchar(10) from deserializer
country varchar(40) from deserializer

Querying the Data in Hive
The following HiveQL SELECT statement shows the same data as the SQL SELECT
statement from Oracle Database shown in "Verifying the Contents of the Data Files" on
page 8-7. The two queries access copies of the same Data Pump files.

SELECT first_name, last_name, gender, birth, country
 FROM customers
 WHERE birth > 1985
 ORDER BY last_name LIMIT 5;

Total MapReduce jobs = 1
Launching Job 1 out of 1
 .
 .
 .
OK
Opal Aaron M 1990 United States of America
KaKit Abeles M 1986 United States of America
Mitchel Alambarati M 1987 Canada
Jade Anderson M 1986 United States of America
Roderica Austin M 1986 United States of America

Glossary-1

Glossary

Apache Flume

A distributed service for collecting and aggregating data from almost any source into a
data store such as HDFS or HBase.

See also Apache HBase; HDFS.

Apache HBase

An open-source, column-oriented database that provides random, read/write access
to large amounts of sparse data stored in a CDH cluster. It provides fast lookup of
values by key and can perform thousands of insert, update, and delete operations per
second.

Apache Hive

An open-source data warehouse in CDH that supports data summarization, ad hoc
querying, and data analysis of data stored in HDFS. It uses a SQL-like language called
HiveQL. An interpreter generates MapReduce code from the HiveQL queries.

By using Hive, you can avoid writing MapReduce programs in Java.

See also Hive Thrift; HiveQL; MapReduce.

Apache Sentry

Integrates with the Hive and Impala SQL-query engines to provide fine-grained
authorization to data and metadata stored in Hadoop.

Apache Solr

Provides an enterprise search platform that includes full-text search, faceted search,
geospatial search, and hit highlighting.

Apache Spark

A fast engine for processing large-scale data. It supports Java, Scala, and Python
applications. Because it provides primitives for in-memory cluster computing, it is
particularly suited to machine-learning algorithms. It promises performance up to 100
times faster than MapReduce.

Apache Sqoop

A command-line tool that imports and exports data between HDFS or Hive and
structured databases. The name Sqoop comes from "SQL to Hadoop." Oracle R
Advanced Analytics for Hadoop uses the Sqoop executable to move data between
HDFS and Oracle Database.

Apache YARN

Glossary-2

Apache YARN

An updated version of MapReduce, also called MapReduce 2. The acronym stands for
Yet Another Resource Negotiator.

ASR

Oracle Auto Service Request, a software tool that monitors the health of the hardware
and automatically generates a service request if it detects a problem.

See also OASM.

Balancer

A service that ensures that all nodes in the cluster store about the same amount of
data, within a set range. Data is balanced over the nodes in the cluster, not over the
disks in a node.

CDH

Cloudera's Distribution including Apache Hadoop, the version of Apache Hadoop
and related components installed on Oracle Big Data Appliance.

Cloudera Hue

Hadoop User Experience, a web user interface in CDH that includes several
applications, including a file browser for HDFS, a job browser, an account
management tool, a MapReduce job designer, and Hive wizards. Cloudera Manager
runs on Hue.

See also HDFS; Apache Hive.

Cloudera Impala

A massively parallel processing query engine that delivers better performance for SQL
queries against data in HDFS and HBase, without moving or transforming the data.

Cloudera Manager

Cloudera Manager enables you to monitor, diagnose, and manage CDH services in a
cluster.

The Cloudera Manager agents on Oracle Big Data Appliance also provide information
to Oracle Enterprise Manager, which you can use to monitor both software and
hardware.

Cloudera Navigator

Verifies access privileges and audits access to data stored in Hadoop, including Hive
metadata and HDFS data accessed through HDFS, Hive, or HBase.

Cloudera Search

Provides search and navigation tools for data stored in Hadoop. Based on Apache Solr.

Cloudera's Distribution including Apache Hadoop (CDH)

See CDH.

cluster

A group of servers on a network that are configured to work together. A server is
either a master node or a worker node.

All servers in an Oracle Big Data Appliance rack form a cluster. Servers 1, 2, and 3 are
master nodes. Servers 4 to 18 are worker nodes.

HotSpot

Glossary-3

See Hadoop.

DataNode

A server in a CDH cluster that stores data in HDFS. A DataNode performs file system
operations assigned by the NameNode.

See also HDFS; NameNode.

Flume

See Apache Flume.

Hadoop

A batch processing infrastructure that stores files and distributes work across a group
of servers. Oracle Big Data Appliance uses Cloudera's Distribution including Apache
Hadoop (CDH).

Hadoop Distributed File System (HDFS)

See HDFS.

Hadoop User Experience (Hue)

See Cloudera Hue.

HBase

See Apache HBase.

HDFS

Hadoop Distributed File System, an open-source file system designed to store
extremely large data files (megabytes to petabytes) with streaming data access
patterns. HDFS splits these files into data blocks and distributes the blocks across a
CDH cluster.

When a data set is larger than the storage capacity of a single computer, then it must
be partitioned across several computers. A distributed file system can manage the
storage of a data set across a network of computers.

See also cluster.

Hive

See Apache Hive.

Hive Thrift

A remote procedure call (RPC) interface for remote access to CDH for Hive queries.

See also CDH; Apache Hive.

HiveQL

A SQL-like query language used by Hive.

See also Apache Hive.

HotSpot

A Java Virtual Machine (JVM) that is maintained and distributed by Oracle. It
automatically optimizes code that executes frequently, leading to high performance.
HotSpot is the standard JVM for the other components of the Oracle Big Data
Appliance stack.

Hue

Glossary-4

Hue

See Cloudera Hue.

Impala

See Cloudera Impala.

Java HotSpot Virtual Machine

See HotSpot.

JobTracker

A service that assigns tasks to specific nodes in the CDH cluster, preferably those
nodes storing the data. MRv1 only.

See also Hadoop; MapReduce.

Kerberos

A network authentication protocol that helps prevent malicious impersonation. It was
developed at the Massachusetts Institute of Technology (MIT).

Mahout

Apache Mahout is a machine learning library that includes core algorithms for
clustering, classification, and batch-based collaborative filtering.

MapReduce

A parallel programming model for processing data on a distributed system. Two
versions of MapReduce are available, MapReduce 1 and YARN (MapReduce 2). The
default version on Oracle Big Data Appliance 3.0 and later is YARN.

A MapReduce program contains these functions:

■ Mappers: Process the records of the data set.

■ Reducers: Merge the output from several mappers.

■ Combiners: Optimizes the result sets from the mappers before sending them to the
reducers (optional and not supported by all applications).

See also Apache YARN.

MySQL Database

A SQL-based relational database management system. Cloudera Manager, Oracle Data
Integrator, Hive, and Oozie use MySQL Database as a metadata repository on Oracle
Big Data Appliance.

NameNode

A service that maintains a directory of all files in HDFS and tracks where data is stored
in the CDH cluster.

See also HDFS.

Navigator

See Cloudera Navigator.

node

A server in a CDH cluster.

See also cluster.

Puppet

Glossary-5

NodeManager

A service that runs on each node and executes the tasks assigned to it by the
ResourceManager. YARN only.

See also ResourceManager; YARN.

NoSQL Database

See Oracle NoSQL Database.

OASM

Oracle Automated Service Manager, a service for monitoring the health of Oracle Sun
hardware systems. Formerly named Sun Automatic Service Manager (SASM).

Oozie

An open-source workflow and coordination service for managing data processing jobs
in CDH.

Oracle Database Instant Client

A small-footprint client that enables Oracle applications to run without a standard
Oracle Database client.

Oracle Linux

An open-source operating system. Oracle Linux 5.6 is the same version used by
Exalogic 1.1. It features the Oracle Unbreakable Enterprise Kernel.

Oracle NoSQL Database

A distributed key-value database that supports fast querying of the data, typically by
key lookup.

Oracle R Distribution

An Oracle-supported distribution of the R open-source language and environment for
statistical analysis and graphing.

Oracle R Enterprise

A component of the Oracle Advanced Analytics Option. It enables R users to run R
commands and scripts for statistical and graphical analyses on data stored in an
Oracle database.

Pig

An open-source platform for analyzing large data sets that consists of the following:

■ Pig Latin scripting language

■ Pig interpreter that converts Pig Latin scripts into MapReduce jobs

Pig runs as a client application.

See also MapReduce.

Puppet

A configuration management tool for deploying and configuring software components
across a cluster. The Oracle Big Data Appliance initial software installation uses
Puppet.

The Puppet tool consists of these components: puppet agents, typically just called
puppets; the puppet master server; a console; and a cloud provisioner.

puppet agent

Glossary-6

See also puppet agent; puppet master.

puppet agent

A service that primarily pulls configurations from the puppet master and applies
them. Puppet agents run on every server in Oracle Big Data Appliance.

See also Puppet; puppet master

puppet master

A service that primarily serves configurations to the puppet agents.

See also Puppet; puppet agent.

ResourceManager

A service that assigns tasks to specific nodes in the CDH cluster, preferably those
nodes storing the data. YARN only.

See also Hadoop; YARN.

Search

See Cloudera Search.

Sentry

See Apache Sentry.

Solr

See Apache Solr.

Spark

See Apache Spark.

Sqoop

See Apache Sqoop.

table

In Hive, all files in a directory stored in HDFS.

See also HDFS.

TaskTracker

A service that runs on each node and executes the tasks assigned to it by the
JobTracker service. MRv1 only.

See also JobTracker.

Whirr

Apache Whirr is a set of libraries for running cloud services.

YARN

See Apache YARN.

ZooKeeper

A MapReduce 1 centralized coordination service for CDH distributed processes that
maintains configuration information and naming, and provides distributed
synchronization and group services.

Index-1

Index

A
access drivers, 6-2, 8-3
ACCESS PARAMETERS Clause

syntax, 7-5
ACCESS PARAMETERS clause, 6-18

special characters, 7-6
syntax rules, 7-5

activity reports, 2-30
ALL_HIVE_COLUMNS view, 6-6, 7-26
ALL_HIVE_DATABASES view, 7-24
ALL_HIVE_TABLES view, 6-5, 7-25
Apache Sentry, 2-27
application adapters, 1-8
applications

data pull, 4-1
data push, 4-2

array overflows, 7-19
Audit Vault

plug-in configuration, 6-3
Audit Vault plug-in, 2-29
auditing data collected from services, 2-29
authentication, 3-1
authorization, 2-27
autoAnalyze configuration property, 5-11, 5-20
autoAnalyze property, 5-7
autoBalance configuration property, 5-11, 5-20
Automated Service Manager

See OASM

B
BALANCER_HOME environment variable, 5-3
bdadiag utility, 2-31
Berkeley DB, 1-5
best practices, 5-1
big data description, 1-1
binary overflows, 7-19
business intelligence, 1-3, 1-5, 1-9
byteWeight configuration property, 5-21

C
catalog views, 7-23
CDH

about, 1-3

diagnostics, 2-31
file system, 1-5
remote client access, 3-2
security, 3-1
version, 2-8

character overflows, 7-19
chopped keys, 5-20
chunking files, 1-5
client access

HDFS cluster, 3-3
HDFS secured cluster, 3-4
Hive, 3-6

client configuration, 3-2
Cloudera Manager

about, 2-3
accessing administrative tools, 2-4
connecting to, 2-3
effect of hardware failure on, 2-17
software dependencies, 2-17
starting, 2-3
UI overview, 2-3
version, 2-8

Cloudera's Distribution including Apache Hadoop
See CDH

clusters, definition, 1-3
column mapping, 7-10
common directory, 6-20
com.oracle.bigdata.colmap, 7-10
com.oracle.bigdata.datamode, 7-11
com.oracle.bigdata.erroropt, 7-12
com.oracle.bigdata.fields, 7-14
com.oracle.bigdata.fileformat, 7-16
com.oracle.bigdata.log.exec, 7-17
com.oracle.bigdata.log.qc, 7-18
com.oracle.bigdata.overflow, 7-19
com.oracle.bigdata.rowformat, 7-20
com.oracle.bigdata.tablename, 7-22
confidence configuration property, 5-20
Copy to BDA utility, 8-1
Counting Reducer, 5-2
CREATE TABLE ORGANIZATION EXTERNAL

syntax, 6-16, 8-3
CREATE TABLE statement

generating automatically for Hive, 7-3
CREATE_EXTDDL_FOR_HIVE function, 6-6

syntax, 7-3

Index-2

D
data dictionary views, 7-23
data mode, 7-11
data replication, 1-5
data skew, 5-1
data source name, 7-22
data type conversion (Big Data SQL), 6-18
data types (HDFS), 7-14
DataNode, 2-15
dba group, 2-26
DBA_HIVE_COLUMNS view, 7-29
DBA_HIVE_DATABASES view, 7-27
DBA_HIVE_TABLES view, 7-28
DBMS_HADOOP package, 6-6, 7-2
DBMS_OUTPUT package, 6-6
DEFAULT DIRECTORY clause, 6-17
delimited text files, 7-20
diagnostics, collecting, 2-31
disks, 2-15
dnsmasq service, 4-4
duplicating data, 1-5

E
emcli utility, 2-2
enableSorting configuration property, 5-20
encryption, 2-27
engineered systems, 1-3
error handling, 7-12
error handling (Big Data SQL), 6-19
Exadata Database Machine, 1-3
Exadata InfiniBand connections, 4-2
Exalytics In-Memory Machine, 1-3
External table clause, 6-16
external tables, 1-8

about, 6-2, 8-3

F
failover

JobTracker, 2-13
NameNode, 2-12

feedbackDir configuration property, 5-22
field extraction, 7-20
field names, 7-14
files, recovering HDFS, 3-10
first NameNode, 2-16
Flume, 2-9, 2-26
ftp.oracle.com, 2-31

G
groups, 2-26, 3-8

H
Hadoop Distributed File System

See HDFS
hadoop group, 3-8
Hadoop log files, 7-17

Hadoop version, 1-3
HADOOP_CLASSPATH environment variable, 5-3,

5-17
HADOOP_USER_CLASSPATH_FIRST environment

variable, 5-3
HBase, 2-9, 2-26
HDFS

about, 1-4, 1-5
auditing, 2-29
user identity, 2-26

HDFS files, 6-14
help from Oracle Support, 2-31
Hive, 2-26

about, 1-5
auditing, 2-29
client access, 3-6
node location, 2-17
software dependencies, 2-17
tables, 3-8
user identity, 2-26

Hive columns, 7-26
Hive data

access from Oracle Database, 6-5
Hive databases, 7-24
hive group, 3-8
Hive table sources, 7-22
Hive tables, 7-25
Hive views, 7-23
HiveQL, 1-5
HotSpot

See Java HotSpot Virtual Machine
Hue, 2-17

user identity, 2-26
users, 3-8

I
Impala, 2-9
InfiniBand connections to Exadata, 4-2
InfiniBand network configuration, 4-1
inputFormat.mapred.* configuration

properties, 5-20
installing CDH client, 3-2

J
Java HotSpot Virtual Machine, 2-8
Job Analyzer, 5-2, 5-4
job duration, 5-1
jobconfPath property, 5-19
jobHistoryPath configuration property, 5-19
JobTracker

failover, 2-13
security, 3-1
user identity, 2-26

JobTracker node, 2-17

K
Kerberos authentication, 3-1
Kerberos commands, 3-1

Index-3

Kerberos user setup, 3-9
key chopping, 5-2
keyLoad.minChopBytes configuration

property, 5-21
keys, assigning to reducers, 5-2
key-value database, 1-5
keyWeight configuration property, 5-22
knowledge modules, 1-8

L
linearKeyLoad properties, 5-8
linearKeyLoad.* configuration properties, 5-21
Linux

disk location, 2-15
installation, 2-8

load, 5-1
Load Balancer, 5-2
loading data, 1-8
LOCATION clause, 6-17
log files, 7-18
login privileges, 3-9

M
mapper workload, 5-2
mapred configuration properties, 5-18
mapred user, 2-26
mapred.map.tasks configuration property, 5-21
MapReduce, 1-4, 1-7, 2-29, 3-1, 3-8
mapreduce configuration properties, 5-18
map.tasks property, 5-20
maxLoadFactor configuration property, 5-22
maxSamplesPct configuration property, 5-23
max.split.size configuration property, 5-21
minChopBytes configuration property, 5-21
minSplits configuration property, 5-23
monitoring activity, 2-30
multirack clusters

service locations, 2-11
MySQL Database

about, 2-17
port number, 2-28
user identity, 2-26
version, 2-8

N
NameNode, 3-1

first, 2-16
NameNode failover, 2-12
Navigator, 2-9
NoSQL databases

See Oracle NoSQL Database
numThreads configuration property, 5-23

O
OASM, port number, 2-28
ODI

See Oracle Data Integrator

oinstall group, 2-26, 3-8
on-disk encryption, 2-27
Oozie, 2-17

auditing, 2-29
software dependencies, 2-17
software services, 2-26
user identity, 2-26

openib.conf file, 4-4
operating system users, 2-26
Oracle Audit Vault and Database Firewall, 2-28

plug-in configuration, 6-3
Oracle Automated Service Manager

See OASM
Oracle Big Data SQL

access drivers, 6-2
data type conversion, 6-18
general description, 1-7, 6-1
installation changes on Oracle Exadata

Machine, 6-20
security, 6-3

Oracle Data Integrator
about, 1-8
node location, 2-17
software dependencies, 2-17
version, 2-8

Oracle Data Integrator agent, 2-28
Oracle Database

access to Hive data, 6-5
HDFS file access, 6-14

Oracle Database Instant Client, 2-8
Oracle Exadata Database Machine, 1-3, 4-1
Oracle Exadata Machine

Big Data SQL installation changes, 6-20
Oracle Exalytics In-Memory Machine, 1-3
Oracle Linux

about, 1-3
relationship to HDFS, 1-4
version, 2-8

Oracle Loader for Hadoop, 1-8, 2-8
Oracle NoSQL Database

about, 1-5, 1-8
port numbers, 2-28
version, 2-8

Oracle R Advanced Analytics for Hadoop, 1-8, 2-8
Oracle R Enterprise, 1-9
Oracle SQL Connector for HDFS, 1-8
Oracle Support, creating a service request, 2-31
oracle user, 2-26, 3-8
Oracle XQuery for Hadoop, 1-8, 2-8
ORACLE_HDFS access driver, 6-14
ORACLE_HIVE

access parameters, 7-9
ORACLE_HIVE access driver, 6-7
ORACLE_HIVE examples, 6-7
oracle.hadoop.balancer.* configuration

properties, 5-20
oracle.hadoop.balancer.autoAnalyze configuration

property, 5-11
oracle.hadoop.balancer.autoAnalyze property, 5-7
oracle.hadoop.balancer.autoBalance configuration

Index-4

property, 5-11
oracle.hadoop.balancer.Balancer class, 5-15
oracle.hadoop.balancer.KeyLoadLinear class, 5-22
oracle.hadoop.balancer.linearKeyLoad.*

properties, 5-8
ORC files, 7-16
out of heap space errors, 5-14
overflow handling, 7-19

P
Parquet files, 7-16
parsing HDFS files, 7-20
partitioning, 2-15, 5-2
Perfect Balance

application requirements, 5-2
basic steps, 5-3
description, 5-1

planning applications, 1-3
PL/SQL packages, 7-2
port map, 2-28
port numbers, 2-27, 2-28
pulling data into Exadata, 4-1
puppet

port numbers, 2-28
security, 2-28
user identity, 2-26

puppet master
node location, 2-16

pushing data into Exadata, 4-2
PUT_LINE function, 6-6

R
R Connector

See Oracle R Advanced Analytics for Hadoop
R distribution, 2-8
R language support, 1-9
range partitioning, 5-2
RC files, 7-16
recovering HDFS files, 3-10
reducer load, 5-1
REJECT LIMIT clause, 6-18
remote client access, 3-2, 3-6
replicating data, 1-5
report.overwrite configuration property, 5-23
reportPath configuration property, 5-23
resource management, 2-10, 2-24
row format description, 7-16
row formats, 7-20
rowWeight configuration property, 5-22
rpc.statd service, 2-28

S
SDP listener configuration, 4-5
SDP over InfiniBand, 4-1
SDP, enabling on Exadata, 4-4
Search, 2-9
security, 2-25
Sentry, 2-27

sequence files, 7-16
SerDe parsing, 7-20
service requests, creating for CDH, 2-31
service tags, 2-28
services

auditing, 2-29
node locations, 2-10

skew, 5-1
SmartScan, 6-2
SmartScan mode, 7-11
Sockets Direct Protocol, 4-1
software components, 2-8
software framework, 1-3
software services

node locations, 2-10
port numbers, 2-28

source name, 7-22
Spark, 2-9
Sqoop, 2-9, 2-26
ssh service, 2-28
static data dictionary views, 7-23
struct overflows, 7-19
svctag user, 2-26

T
tables, 1-8, 3-8
TaskTracker

user identity, 2-26
text files, 7-16
text overflows, 7-19
tmpDir configuration property, 5-24
tools.* configuration properties, 5-19
trash facility, 3-10
trash facility, disabling, 3-12
trash interval, 3-11
troubleshooting CDH, 2-31
TYPE clause, 6-17

U
union overflows, 7-19
uploading diagnostics, 2-31
useClusterStats configuration property, 5-24
useMapreduceApi configuration property, 5-24
user access from Oracle Database, 6-19
user accounts, 3-8
user groups, 3-8
USER_HIVE_COLUMNS view, 7-32
USER_HIVE_DATABASES view, 7-30
USER_HIVE_TABLES view, 7-31
users

Cloudera Manager, 2-4
operating system, 2-26

W
writeKeyBytes configuration property, 5-19

Index-5

X
xinetd service, 2-28
XQuery connector

See Oracle XQuery for Hadoop

Y
YARN support, 1-7

Z
ZooKeeper, 2-26

Index-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Backus-Naur Form Syntax

	Part I Administration
	1 Introducing Oracle Big Data Appliance
	What Is Big Data?
	High Variety
	High Complexity
	High Volume
	High Velocity

	The Oracle Big Data Solution
	Software for Big Data
	Software Component Overview

	Acquiring Data for Analysis
	Hadoop Distributed File System
	Apache Hive
	Oracle NoSQL Database

	Organizing Big Data
	MapReduce
	Oracle Big Data SQL
	Oracle Big Data Connectors
	Oracle SQL Connector for Hadoop Distributed File System
	Oracle Loader for Hadoop
	Oracle Data Integrator
	Oracle XQuery for Hadoop
	Oracle R Advanced Analytics for Hadoop

	Oracle R Support for Big Data

	Analyzing and Visualizing Big Data

	2 Administering Oracle Big Data Appliance
	Monitoring Multiple Clusters Using Oracle Enterprise Manager
	Using the Enterprise Manager Web Interface
	Using the Enterprise Manager Command-Line Interface

	Managing Operations Using Cloudera Manager
	Monitoring the Status of Oracle Big Data Appliance
	Performing Administrative Tasks
	Managing CDH Services With Cloudera Manager

	Using Hadoop Monitoring Utilities
	Monitoring MapReduce Jobs
	Monitoring the Health of HDFS

	Using Cloudera Hue to Interact With Hadoop
	About the Oracle Big Data Appliance Software
	Software Components
	Unconfigured Software
	Allocating Resources Among Services

	About the CDH Software Services
	Where Do the Services Run on a Single-Rack CDH Cluster?
	Where Do the Services Run on a Multirack CDH Cluster?
	About MapReduce
	Automatic Failover of the NameNode
	Automatic Failover of the ResourceManager
	Map and Reduce Resource Configuration

	Effects of Hardware on Software Availability
	Logical Disk Layout
	Critical and Noncritical CDH Nodes
	High Availability or Single Points of Failure?
	Where Do the Critical Services Run?

	First NameNode Node
	Second NameNode Node
	First ResourceManager Node
	Second ResourceManager Node
	Noncritical CDH Nodes

	Managing a Hardware Failure
	About Oracle NoSQL Database Clusters
	Prerequisites for Managing a Failing Node
	Managing a Failing CDH Critical Node
	Managing a Failing Noncritical Node

	Stopping and Starting Oracle Big Data Appliance
	Prerequisites
	Stopping Oracle Big Data Appliance
	Starting Oracle Big Data Appliance

	Managing Oracle Big Data SQL
	Adding and Removing the Oracle Big Data SQL Service
	Allocating Resources to Oracle Big Data SQL

	Security on Oracle Big Data Appliance
	About Predefined Users and Groups
	About User Authentication
	About Fine-Grained Authorization
	About On-Disk Encryption
	Port Numbers Used on Oracle Big Data Appliance
	About Puppet Security

	Auditing Oracle Big Data Appliance
	About Oracle Audit Vault and Database Firewall
	Setting Up the Oracle Big Data Appliance Plug-in
	Monitoring Oracle Big Data Appliance

	Collecting Diagnostic Information for Oracle Customer Support

	3 Supporting User Access to Oracle Big Data Appliance
	About Accessing a Kerberos-Secured Cluster
	Providing Remote Client Access to CDH
	Prerequisites
	Installing a CDH Client on Any Supported Operating System
	Configuring a CDH Client for an Unsecured Cluster
	Configuring a CDH Client for a Kerberos-Secured Cluster
	Verifying Access to a Cluster from the CDH Client

	Providing Remote Client Access to Hive
	Managing User Accounts
	Creating Hadoop Cluster Users
	Creating Users on an Unsecured Cluster
	Creating Users on a Secured Cluster

	Providing User Login Privileges (Optional)

	Recovering Deleted Files
	Restoring Files from the Trash
	Changing the Trash Interval
	Disabling the Trash Facility
	Completely Disabling the Trash Facility
	Disabling the Trash Facility for Local HDFS Clients
	Disabling the Trash Facility for a Remote HDFS Client

	4 Configuring Oracle Exadata Database Machine for Use with Oracle Big Data Appliance
	About Optimizing Communications
	About Applications that Pull Data Into Oracle Exadata Database Machine
	About Applications that Push Data Into Oracle Exadata Database Machine

	Prerequisites for Optimizing Communications
	Specifying the InfiniBand Connections to Oracle Big Data Appliance
	Specifying the InfiniBand Connections to Oracle Exadata Database Machine
	Enabling SDP on Exadata Database Nodes
	Creating an SDP Listener on the InfiniBand Network

	Part II Oracle Big Data Appliance Software
	5 Optimizing MapReduce Jobs Using Perfect Balance
	What is Perfect Balance?
	About Balancing Jobs Across Map and Reduce Tasks
	Ways to Use Perfect Balance Features
	Perfect Balance Components

	Application Requirements
	Getting Started with Perfect Balance
	Analyzing a Job's Reducer Load
	About Job Analyzer
	Methods of Running Job Analyzer

	Running Job Analyzer as a Standalone Utility
	Job Analyzer Utility Example
	Job Analyzer Utility Syntax

	Running Job Analyzer Using Perfect Balance
	Running Job Analyzer Using Perfect Balance
	Collecting Additional Metrics

	Reading the Job Analyzer Report

	About Configuring Perfect Balance
	Running a Balanced MapReduce Job Using Perfect Balance
	About Perfect Balance Reports
	About Chopping
	Selecting a Chopping Method
	How Chopping Impacts Applications

	Troubleshooting Jobs Running with Perfect Balance
	Using the Perfect Balance API
	Modifying Your Java Code to Use Perfect Balance
	Running Your Modified Java Code with Perfect Balance

	About the Perfect Balance Examples
	About the Examples in This Chapter
	Extracting the Example Data Set

	Perfect Balance Configuration Property Reference

	Part III Oracle Big Data SQL
	6 Using Oracle Big Data SQL for Data Access
	What Is Oracle Big Data SQL?
	About Oracle External Tables
	About the Access Drivers for Oracle Big Data SQL
	About Smart Scan Technology
	About Data Security with Oracle Big Data SQL

	Installing Oracle Big Data SQL
	Prerequisites for Using Oracle Big Data SQL 1.1
	Performing the Installation
	Running the Post-Installation Script for Oracle Big Data SQL
	Running the bds-exa-install Script
	bds-ex-install Syntax

	Creating an Oracle External Table for Hive Data
	Obtaining Information About a Hive Table
	Using the CREATE_EXTDDL_FOR_HIVE Function
	Developing a CREATE TABLE Statement for ORACLE_HIVE
	Using the Default ORACLE_HIVE Settings
	Overriding the Default ORACLE_HIVE Settings

	Creating an Oracle External Table for Oracle NoSQL Database
	Creating a Hive External Table for Oracle NoSQL Database
	Creating the Oracle Database Table for Oracle NoSQL Data
	About Column Data Type Mappings
	Example of Accessing Data in Oracle NoSQL Database
	Creating the Oracle NoSQL Database Example Table
	Creating the Example Hive Table for vehicleTable
	Creating the Oracle Table for VEHICLES

	Creating an Oracle External Table for Apache HBase
	Creating a Hive External Table for HBase
	Creating the Oracle Database Table for HBase

	Creating an Oracle External Table for HDFS Files
	Using the Default Access Parameters with ORACLE_HDFS
	Overriding the Default ORACLE_HDFS Settings
	Accessing a Delimited Text File
	Accessing Avro Container Files

	About the SQL CREATE TABLE Statement
	Basic Syntax
	About the External Table Clause
	TYPE Clause
	DEFAULT DIRECTORY Clause
	LOCATION Clause
	ORACLE_HDFS LOCATION Clause
	ORACLE_HIVE LOCATION Clause
	REJECT LIMIT Clause
	ACCESS PARAMETERS Clause

	About Data Type Conversions
	Querying External Tables
	Granting User Access
	About Error Handling
	About the Log Files

	About Oracle Big Data SQL on Oracle Exadata Database Machine
	Starting and Stopping the Big Data SQL Agent
	About the Common Directory
	Common Configuration Properties
	bigdata.properties
	bigdata-log4j.properties

	About the Cluster Directory
	About Permissions

	7 Oracle Big Data SQL Reference
	DBMS_HADOOP PL/SQL Package
	CREATE_EXTDDL_FOR_HIVE
	Example

	CREATE TABLE ACCESS PARAMETERS Clause
	Syntax Rules for Specifying Properties
	ORACLE_HDFS Access Parameters
	Default Parameter Settings for ORACLE_HDFS
	Optional Parameter Settings for ORACLE_HDFS

	ORACLE_HIVE Access Parameters
	Default Parameter Settings for ORACLE_HIVE
	Optional Parameter Values for ORACLE_HIVE

	com.oracle.bigdata.colmap
	com.oracle.bigdata.datamode
	com.oracle.bigdata.erroropt
	com.oracle.bigdata.fields
	com.oracle.bigdata.fileformat
	com.oracle.bigdata.log.exec
	com.oracle.bigdata.log.qc
	com.oracle.bigdata.overflow
	com.oracle.bigdata.rowformat
	com.oracle.bigdata.tablename

	Static Data Dictionary Views for Hive
	ALL_HIVE_DATABASES
	ALL_HIVE_TABLES
	ALL_HIVE_COLUMNS
	DBA_HIVE_DATABASES
	DBA_HIVE_TABLES
	DBA_HIVE_COLUMNS
	USER_HIVE_DATABASES
	USER_HIVE_TABLES
	USER_HIVE_COLUMNS

	8 Copying Oracle Tables to Hadoop
	What Is Copy to BDA?
	Getting Started Using Copy to BDA
	Installing Copy to BDA
	Prerequisites for Copy to BDA
	Installing Copy to BDA on Oracle Big Data Appliance
	Installing Copy to BDA on Oracle Exadata Database Machine

	Generating the Data Pump Files
	About Data Pump Format Files
	Identifying the Target Directory
	About the CREATE TABLE Syntax
	Copying the Files to HDFS

	Creating a Hive Table
	About Hive External Tables
	About Column Mappings
	About Data Type Conversions

	Example Using the Sample Schemas
	About the Sample Data
	Creating the EXPDIR Database Directory
	Creating Data Pump Format Files for Customer Data
	CREATE TABLE Example With a Simple SELECT Statement
	CREATE TABLE Example With a More Complex SQL SELECT Statement

	Verifying the Contents of the Data Files
	Copying the Files into Hadoop
	Creating a Hive External Table
	Querying the Data in Hive

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X
	Y
	Z

